A random variable X is geometrically infinitely divisible iff for every p ∈ (0,1) there exists random variable such that , where ’s are i.i.d. copies of , and random variable T(p) independent of has geometric distribution with the parameter p. In the paper we give some new characterization of geometrically infinitely divisible distribution. The main results concern geometrically strictly semistable distributions which form a subset of geometrically infinitely divisible distributions. We show that they are limit laws for random and deterministic sums of independent random variables.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1089, author = {Marek T. Malinowski}, title = {Geometrically strictly semistable laws as the limit laws}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {27}, year = {2007}, pages = {79-97}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1089} }
Marek T. Malinowski. Geometrically strictly semistable laws as the limit laws. Discussiones Mathematicae Probability and Statistics, Tome 27 (2007) pp. 79-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1089/
[000] [1] I. Gertsbach, A survey of methods used in engineering reliability, Proceedings 'Reliability and Decision Making', Universita di Siena 1990.
[001] [2] L.B. Klebanov, G.M. Maniya and I.A. Melamed, A problem of V.M. Zolotarev and analogues of infinitely divisible and stable distributions in a scheme for summation of a random number of random variables, Theory Probab. Appl. 29 (1984), 791-794. | Zbl 0579.60016
[002] [3] P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris 1937. | Zbl 63.0490.04
[003] [4] G.D. Lin, Characterizations of the Laplace and related distributions via geometric compound, Sankhya Ser. A 56 (1994), 1-9. | Zbl 0806.62010
[004] [5] M. Loève, Nouvelles classes de lois limites, Bull. Soc. Math. France 73 (1945), 107-126. | Zbl 0063.03608
[005] [6] M. Maejima, Semistable distributions, in: Lévy Processes, Birkhäuser, Boston 2001, 169-183.
[006] [7] M. Maejima and G. Samorodnitsky, Certain probabilistic aspects of semistable laws, Ann. Inst. Statist. Math. 51 (1999), 449-462. | Zbl 0954.60002
[007] [8] N.R. Mohan, R. Vasudeva and H.V. Hebbar, On geometrically infinitely divisible laws and geometric domains of attraction, Sankhya Ser. A 55 (1993), 171-179. | Zbl 0803.60017
[008] [9] S.T. Rachev and G. Samorodnitsky, Geometric stable distributions in Banach spaces, J. Theoret. Probab. 2 (1994), 351-373. | Zbl 0804.60014
[009] [10] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Univ. Press, Cambridge 1999. | Zbl 0973.60001