Linear model genealogical tree application to an odontology experiment
Ricardo Covas
Discussiones Mathematicae Probability and Statistics, Tome 27 (2007), p. 47-77 / Harvested from The Polish Digital Mathematics Library

Commutative Jordan algebras play a central part in orthogonal models. We apply the concepts of genealogical tree of an Jordan algebra associated to a linear mixed model in an experiment conducted to study optimal choosing of dentist materials. Apart from the conclusions of the experiment itself, we show how to proceed in order to take advantage of the great possibilities that Jordan algebras and mixed linear models give to practitioners.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:277027
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1088,
     author = {Ricardo Covas},
     title = {Linear model genealogical tree application to an odontology experiment},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {27},
     year = {2007},
     pages = {47-77},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1088}
}
Ricardo Covas. Linear model genealogical tree application to an odontology experiment. Discussiones Mathematicae Probability and Statistics, Tome 27 (2007) pp. 47-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1088/

[000] [1] R. Covas, Inferência Semi-Bayesiana e Modelos de Componentes de Variância - Tese de Mestrado, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (document in Portuguese Language) 2003.

[001] [2] R. Covas, Orthogonal Mixed Models and Commutative Jordan Algebras - PhD Thesis, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa 2007.

[002] [3] R. Covas, J.T. Mexia and R. Zmyślony, Lattices of Jordan algebras, To be published in Linear Algebra and Aplications 2007.

[003] [4] S. Ferreira, Inferência para Modelos Ortogonais com Segregação, Tese de Doutoramento - Universidade da Beira Interior (document in Portuguese Language) 2006.

[004] [5] M. Fonseca, J.T. Mexia and R. Zmyślony, Binary Operations on Jordan Algebras and Orthogonal Normal Models, Linear Algebra and it's Applications 417 (1) (2006), 75-86. | Zbl 1113.62004

[005] [6] S. Gnot and J. Kleffe, Quadratic Estimation in Mixed Linear Models with two Variance Components, Journal Statistical Planning and Inference 8 (1983), 267-279. | Zbl 0561.62064

[006] [7] P. Jordan, J. von Neumann and E. Wigner, On an Algebraic Generalization of the Quantum Mechanical Formulation, Ann. Math. 36 (1934), 26-64. | Zbl 60.0902.02

[007] [8] J.D. Malley, Optimal Unbiased Estimation of Variance Components, Lecture Notes in Statist. 39, Springer-Verlag, Berlin 1986. | Zbl 0604.62064

[008] [9] A. Michalski and R. Zmyślony, Testing Hypothesis for Variance components in Mixed Linear Models Statistics 27 (3-4) (1996), 297-310. | Zbl 0842.62059

[009] [10] A. Michalski and R. Zmyślony, Testing Hypothesis for Linear Fuctions of Parameters in Mixed Linear Models, Tatra Mt. Math. Publ. 17 (1999), 103-110. | Zbl 0987.62012

[010] [11] D.C. Montgomery, Design and Analysis of Experiments - 6th Edition, Wiley 2004.

[011] [12] C.R. Rao and J. Kleffe, Estimation of Variance Components and Applications, North-Holland, Elsevier - Amsterdam 1988. | Zbl 0645.62073

[012] [13] J. Seely, Quadratic Subspaces and Completeness, Ann. Math. Stat. 42 N2 (1971), 710-721. | Zbl 0249.62067

[013] [14] J. Seely, Completeness for a family of multivariate normal distribution, Ann. Math. Stat. 43 (1972), 1644-1647. | Zbl 0257.62018

[014] [15] J. Seely, Minimal sufficient statistics and completeness for multivariate normal families, Sankhyã 39 (1977), 170-185. | Zbl 0409.62004

[015] [16] R. Zmyślony, On estimation of parameters in linear models, Applicationes Mathematicae XV 3 (1976), 271-276. | Zbl 0401.62049