Let , 1 ≤ i ≤ n, n ≥ 1 be a linear regression model and suppose that the random errors e₁, e₂, ... are independent and α-stable. In this paper, we obtain sufficient conditions for the strong consistency of the least squares estimator β̃ of β under additional assumptions on the non-random sequence x₁, x₂,... of real vectors.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1087, author = {Jo\~ao Tiago Mexia and Jo\~ao Lita da Silva}, title = {Sufficient conditions for the strong consistency of least squares estimator with $\alpha$-stable errors}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {27}, year = {2007}, pages = {27-45}, zbl = {06231511}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1087} }
João Tiago Mexia; João Lita da Silva. Sufficient conditions for the strong consistency of least squares estimator with α-stable errors. Discussiones Mathematicae Probability and Statistics, Tome 27 (2007) pp. 27-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1087/
[000] [1] B.D.O. Anderson and J.B. Moore, On martingales and least squares linear system identification, Technical report EE7522 (1975).
[001] [2] B.D.O. Anderson and J.B. Moore, A matrix Kronecker lemma, Linear Algebra and its Applications 15 (1976), 227-234. | Zbl 0356.15019
[002] [3] P. Billingsley, Probability and Measure, (third edition) John Wiley & Sons 1995.
[003] [4] Y.S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, Springer 1997.
[004] [5] H. Drygas, Consistency of the least squares and Gauss-Markov estimators in regression models, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 17 (1971), 309-326. | Zbl 0204.52801
[005] [6] H. Drygas, Weak and strong consistency of the least squares estimators in regression model, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 34 (1976), 119-127. | Zbl 0307.62047
[006] [7] W. Feller, An Introduction to Probability Theory and Its Applications - Volume I, (third edition) John Wiley & Sons 1968. | Zbl 0155.23101
[007] [8] W. Feller, An Introduction to Probability Theory and Its Applications - Volume II, (second edition) John Wiley & Sons 1971. | Zbl 0219.60003
[008] [9] I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen (1971). | Zbl 0219.60027
[009] [10] M. Jin, Some new results of the strong consistency of multiple regression coefficients, p. 514-519 in: 'Proceedings of the Second Asian Mathematical Conference 1995' (Tangmanee, S. & Schulz, E. eds.), World Scientific. | Zbl 0952.62064
[010] [11] M. Jin and X. Chen, Strong consistency of least squares estimate in multiple regression when the error variance is infinite, Stat. Sin. 9 (1) (1999), 289-296. | Zbl 0913.62024
[011] [12] T.L. Lai, H. Robbins and C.Z. Wei, Strong consistency of least squares estimates in multiple regression, Proc. Natl. Acad. Sci. USA 75 (7) (1978), 3034-3036. | Zbl 0386.62051
[012] [13] T.L. Lai, H. Robbins and C.Z. Wei, Strong consistency of least squares estimates in multiple regression II, J. Multivariate Anal. 9 (1979), 343-362. | Zbl 0416.62051
[013] [14] J.T. Mexia, P. Corte Real, M.L. Esquível and J. Lita da Silva, Convergência do estimador dos mínimos quadrados em modelos lineares, Estaística Jubilar, Actas do XII Congresso da Sociedade Portuguesa de Estatística, Edições SPE (2005), 455-466.
[014] [15]J.T. Mexia and J. Lita da Silva, Least squares estimator consistency: a geometric approach, Discussiones Mathematicae - Probability and Statistics 26 (1) (2006), 19-45. | Zbl 1128.62029
[015] [16] G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman & Hall 1994. | Zbl 0925.60027
[016] [17] V.V. Uchaikin and V.M. Zolotarev, Chance and Stability, Stable Distributions and Their Applications, Ultrech 1999. | Zbl 0944.60006
[017] [18] V.M. Zolotarev, One-Dimensional Stable Distributions, American Mathematical Society, Providence, R.I. 1986. | Zbl 0589.60015