On geometry of the set of admissible quadratic estimators of quadratic functions of normal parameters
Konrad Neumann ; Stefan Zontek
Discussiones Mathematicae Probability and Statistics, Tome 26 (2006), p. 109-125 / Harvested from The Polish Digital Mathematics Library

We consider the problem of admissible quadratic estimation of a linear function of μ² and σ² in n dimensional normal model N(Kμ,σ²Iₙ) under quadratic risk function. After reducing this problem to admissible estimation of a linear function of two quadratic forms, the set of admissible estimators are characterized by giving formulae on the boundary of the set D ⊂ R² of components of the two quadratic forms constituting the set of admissible estimators. Different shapes and topological properties of the set D are studied.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:277042
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1077,
     author = {Konrad Neumann and Stefan Zontek},
     title = {On geometry of the set of admissible quadratic estimators of quadratic functions of normal parameters},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {26},
     year = {2006},
     pages = {109-125},
     zbl = {1128.62005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1077}
}
Konrad Neumann; Stefan Zontek. On geometry of the set of admissible quadratic estimators of quadratic functions of normal parameters. Discussiones Mathematicae Probability and Statistics, Tome 26 (2006) pp. 109-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1077/

[000] [1] S. Gnot, E. Rafajłowicz and A. Urbańska-Motyka, Statistical inference in a linear model for spatially located sensors and random input, Ann. Inst. Statist. Math. 53. 2 (2001), 370-379. | Zbl 1027.62038

[001] [2] S. Gnot and J. Kleffe, Quadratic estimation in mixed linear models with two variance components, J. Statist. Plann. Inference 8 (1983), 267-279. | Zbl 0561.62064

[002] [3] D.A. Harville, Quadratic unbiased estimation of two variance components for the one-way classification, Biometrika 56 (1969), 313-326. | Zbl 0184.22305

[003] [4] L.R. LaMotte, Admissibility in linear model, Ann. Statist. 19 (1982), 245-256. | Zbl 0485.62070

[004] [5] L.R. LaMotte, Admissibility, unbiasedness, and nonnegativity in the balanced, random, one-way anova model, Linear statistical inference (Poznań, 1984), Lecture Notes in Statist. 35 (1985), 184-199.

[005] [6] K. Neumann and S. Zontek, On geometry of the set of admissible invariant quadratic estimators in balanced two variance components model, Statistical Papers 45 (2004), 67-80. | Zbl 1052.62072

[006] [7] A.L. Rukhin, Quadratic estimators of quadratic functions of normal parameters, J. Statist. Plann. Inference 15 (1987), 301-310. | Zbl 0609.62039

[007] [8] A.L. Rukhin, Admissible polynomial estimates for quadratic polynomials of normal parameters (in russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 184, Issued. Mat. Statist. 9 (1990), 234-247. | Zbl 0759.62002

[008] [9] R. Zmyślony, Quadratic admissible estimators, (in polish) Roczniki Polskiego Towarzystwa Matematycznego, Seria III: Matematyka Stosowana VII, (1976), 117-122.

[009] [10] S. Zontek, Admissibility of limits of the unique locally best linear estimators with application to variance components models, Probab. Math. Statist. 9. 2 (1988), 29-44. | Zbl 0674.62008