We introduce set-valued stochastic integrals driven by a square-integrable martingale and by a semimartingale. We investigate properties of both integrals.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1076, author = {Jerzy Motyl and Joachim Syga}, title = {Properties of set-valued stochastic integrals}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {26}, year = {2006}, pages = {83-103}, zbl = {1129.93046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1076} }
Jerzy Motyl; Joachim Syga. Properties of set-valued stochastic integrals. Discussiones Mathematicae Probability and Statistics, Tome 26 (2006) pp. 83-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1076/
[000] [1] K.K. Aase and P. Guttrup, Estimation in models for security prices, Scand. Actuarial J. 3/4 (1987), 211-225.
[001] [2] J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser Boston-Basel-Berlin 1990. | Zbl 0713.49021
[002] [3] G. Boscan, On Wiener stochastic integral of a multifunction, Seminarul de Teoria Probabilitatilor si Applicatii, Univ. Timisoara 1987.
[003] [4] C. Castaing, Sur les multi-applications measurables, Rev. Fr. Inf. Recher. Oper. 1 (1967), 91-126.
[004] [5] K.L. Chung and R.J. Williams, Introduction to stochastic integration, Birkhäuser Boston-Basel-Berlin 1990. | Zbl 0725.60050
[005] [6] D. Duffie, Dynamic Asset Pricing Theory, Princeton Univ. Press, Princeton, New Jersey 1996. | Zbl 1140.91041
[006] [7] E. Eberlein and U. Keller, Hyperbolic distributions in finance, Bernoulli 1 (1995), 281-299. | Zbl 0836.62107
[007] [8] B.D. Gelman and J.S. Gliklikh, Set-valued Itô integral, Priblizennye Metody Issledovani Differentialnych Uravneni i ikh Prilozeni, Mezbuzovskii Sbornik, Kuibyshevskii Universitaet (1984) (in Russian).
[008] [9] I.I. Gihman and A.V. Skorohod, Stochastic Differential Equations, Springer Verlag, Berlin-Heidelberg-New York 1972. | Zbl 0242.60003
[009] [10] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-182. | Zbl 0368.60006
[010] [11] F. Hiai, Multivalued stochastic integrals and stochastic differential inclusions, Division of Applied Mathematics, Research Institude of Applied Electricity, Sapporo 060, Japan, (not published).
[011] [12] M. Kisielewicz, Set-valued Stochastic Integrals and Stochastic Inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800. | Zbl 0891.93070
[012] [13] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. and Polish Sci. Publ., Warszawa-Dordrecht-Boston-London 1991. | Zbl 0731.49001
[013] [14] M. Kisielewicz, M. Michta and J. Motyl, Set Valued Approach to Stochastic Control. Part I (Existence and regurality properties), Dynamic Syst. Appl. 12 (3) (2003), 405-432. | Zbl 1063.93047
[014] [15] M. Kisielewicz, M. Michta and J. Motyl, Set Valued Approach to Stochastic Control. Part II (Viability and Semimartingale Issues), Dynamic Syst. and Appl. 12 (3) (2003), 433-466. | Zbl 1064.93042
[015] [16] P. Protter, Stochastic Integration and Differential Equations (A New Approach), Springer-Verlag, Berlin-Heideberg-New York 1990. | Zbl 0694.60047