The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1075, author = {Anna G\'oralczyk and Jerzy Motyl}, title = {Set-valued Stratonovich integral}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {26}, year = {2006}, pages = {63-81}, zbl = {1129.93045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1075} }
Anna Góralczyk; Jerzy Motyl. Set-valued Stratonovich integral. Discussiones Mathematicae Probability and Statistics, Tome 26 (2006) pp. 63-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1075/
[000] [1] J.P. Aubin, Dynamic Economic Theory, A viability Approach, Springer, Verlag, Berlin 1997. | Zbl 0876.90032
[001] [2] J.P. Aubin and A. Cellina, Differential Inclusions, Noordhoff, Leyden 1984. | Zbl 0538.34007
[002] [3] J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser Boston-Basel-Berlin 1990. | Zbl 0713.49021
[003] [4] H.T. Banks and M.Q. Jacobs, A diffenertial calculus for set-valued function, J. Math. Anal. Appl. 29 (1970), 246-272. | Zbl 0191.43302
[004] [5] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-182. | Zbl 0368.60006
[005] [6] M. Hukuhara, Intégration des applications measurables dont a valeur est un compact convexe, Funkcialaj Ekvacioj 10 (1967), 205-223. | Zbl 0161.24701
[006] [7] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ.-PWN, Dordrecht-Boston-London Warszawa 1991. | Zbl 0731.49001
[007] [8] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800. | Zbl 0891.93070
[008] [9] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Existence and regularity properties, Dynamic Syst. Appl. 12 (3-4) (2003), 405-432. | Zbl 1063.93047
[009] [10] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Viability and semimartingale issues, Dynamic Syst. Appl. 12 (3-4) (2003), 433-466. | Zbl 1064.93042
[010] [11] V. Lakshmikhantam, T. Gnana Bhaskar and D. Vasundhara, Theory of Set Differential Equations in Metric Space, (preprint) (2004).
[011] [12] P. Protter, Stochastic Integration and Differential Equations: A New Approach, Springer, New York 1990.
[012] [13] J. San Martin, One-dimensional Stratonovich differential equations, Ann. Probab. 21 (1) (1993), 509-553. | Zbl 0773.60049
[013] [14] E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist. 36 (1965), 1560-1564. | Zbl 0138.11201