Least squares estimator consistency: a geometric approach
João Tiago Mexia ; João Lita da Silva
Discussiones Mathematicae Probability and Statistics, Tome 26 (2006), p. 19-45 / Harvested from The Polish Digital Mathematics Library

Consistency of LSE estimator in linear models is studied assuming that the error vector has radial symmetry. Generalized polar coordinates and algebraic assumptions on the design matrix are considered in the results that are established.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:277028
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1073,
     author = {Jo\~ao Tiago Mexia and Jo\~ao Lita da Silva},
     title = {Least squares estimator consistency: a geometric approach},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {26},
     year = {2006},
     pages = {19-45},
     zbl = {1128.62029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1073}
}
João Tiago Mexia; João Lita da Silva. Least squares estimator consistency: a geometric approach. Discussiones Mathematicae Probability and Statistics, Tome 26 (2006) pp. 19-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1073/

[000] [1] P. Billingsley, Probability and Measure, (third edition), John Wiley & Sons 1995.

[001] [2] S. Cambanis, S. Huang and G. Simons, On the theory of elliptically contoured distributions, Journal of Multivariate Analysis 11 (1981), 368-385. | Zbl 0469.60019

[002] [3] X. Chen, Some results on consistency of LS estimates, Chin. Sci. Bull. 39 (22) (1994), 1872-1876. | Zbl 0827.62056

[003] [4] X. Chen, Consistency of LS estimates of multiple regression under a lower order moment condition, Sci. Chin. 38 (12) (1995), 1420-1431. | Zbl 0842.62054

[004] [5] X. Chen, A note on the consistency of LS estimates in linear models, Chin. Ann. Math. Ser. B, 22 (4) (2001), 471-474. | Zbl 0984.62014

[005] [6] Y.S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales (third edition), Springer 1997.

[006] [7] K.L. Chung, A Course in Probability Theory (third edition), Academic Press 2001.

[007] [8] D. Dacunha-Castelle et M. Duflo, Probabilités et Statistiques: Problèmes à Temps Fixe, Masson 1982. | Zbl 0535.62003

[008] [9] K. Fang, S. Kotz and K. Ng, Symmetric Multivariate and Related Distributions, Monographs on Statistics and Applied Probability 36, Chapman & Hall 1990.

[009] [10] V. Koroliouk, N. Portenko, A. Skorokhod and A. Tourbine, Aide-Mémoire de Théorie des Probabilités et de Statistique Mathématique. Mir. (1983).

[010] [11] M. Loève, Probability Theory I (fourth edition), Springer 1977. | Zbl 0359.60001

[011] [12] M. Loève, Probability Theory II (fourth edition), Springer 1978.

[012] [13] L.T. Magalhães, Álgebra Linear como Introdução á Matemática Aplicada, Texto Editora 1992.

[013] [14] B.M. Makarov, M.G. Goluzina, A.A. Lodkin, and A.N. Podkorytov, Selected Problems in Real Analysis, American Mathematical Society 1992.

[014] [15] J.T. Mexia, and P. Corte Real, Extension of Kolmogorov's strong law to multiple regression, Revista de Estatística, (2° quadrimestre de 2001), 24 (2001), 277-278.

[015] [16] J.T. Mexia, P. Corte Real, M.L. Esquível, e J. Lita da Silva, Convergência do estimador dos mínimos quadrados em modelos lineares, Estatística Jubilar. Actas do XII Congresso da Sociedade Portuguesa de Estatística, Edições SPE, (2005), 455-466.

[016] [17] J.T. Mexia e J. Lita da Silva, A consistęncia do estimador dos mínimos quadrados em domínios de atracção maximais, (to appear) 2005.

[017] [18] J.T. Mexia and J. Lita da Silva, Least squares estimator consistency: on error stability, (to appear) 2005. | Zbl 1128.62029

[018] [19] J. Mingzhong, Some new results of the strong consistency of multiple regression coefficients, Proceedings of the Second Asian Mathematical Conference 1995 (Tangmanee, S. & Schulz, E. eds.), World Scientific (1995), 514-519. | Zbl 0952.62064

[019] [20] J. Mingzhong and X. Chen, Strong consistency of least squares estimate in multiple regression when the error variance is infinite, Stat. Sin. 9 (1) (1999), 289-296. | Zbl 0913.62024

[020] [21] W. Pestman, Mathematical Statistics, Walter de Gruyter Berlin 1998.

[021] [22] C.R. Rao, Linear Statistical Inference and Its Applications, (second edition), John Wiley & Sons (1973). | Zbl 0256.62002

[022] [23] R. Schmidt, Tail dependence for elliptically contoured distributions, Mathematical Methods of Operations Research 55 (2002), 301-327. | Zbl 1015.62052

[023] [24] D. Williams, Probability with Martingales, Cambridge University Press, Cambridge 1991. | Zbl 0722.60001