Stable hypothesis are hypothesis that may refer either for the fixed part or for the random part of the model. We will consider such hypothesis for models with balanced cross-nesting. Generalized F tests will be derived. It will be shown how to use Monte-Carlo methods to evaluate p-values for those tests.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1071, author = {D\'ario Ferreira and Jo\~ao Tiago Mexia and Sandra Saraiva Ferreira}, title = {Stable hypothesis for mixed models with balanced cross-nesting}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {25}, year = {2005}, pages = {241-249}, zbl = {1102.62016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1071} }
Dário Ferreira; João Tiago Mexia; Sandra Saraiva Ferreira. Stable hypothesis for mixed models with balanced cross-nesting. Discussiones Mathematicae Probability and Statistics, Tome 25 (2005) pp. 241-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1071/
[000] [1] M. Fonseca, J.T. Mexia and R. Zmyślony, Jordan Alebras, Generating Pivot variables and Orthogonal Mixed Models 22 (2004), 37-51.
[001] [2] A. Michalski and R. Zmyślony, Testing Hypothesis For Variance Components in Mixed Linear Models, Statistics 27 (1996), 297-310. | Zbl 0842.62059
[002] [3] A. Michalski and R. Zmyślony, Testing Hypothesis For Linear Functions of Parameters in Mixed Linear Models, Tatra Mt Math Publications 17 (1999), 103-110. | Zbl 0987.62012
[003] [4] S. Weerahandi, Exact Statistical methods for Data Analysis, 2nd print. Springer Verlags 1996. | Zbl 0912.62002
[004] [5] S. Saraiva and J.T. Mexia, Alternative Analysis of an Experiment On Grapevines, Colloquium Biometryczne 34a (2004), 89-95.