In this paper, we study some analytical properties of the symmetric α-stable density function.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1063, author = {Gra\.zyna Mazurkiewicz}, title = {On S$\alpha$S density function}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {25}, year = {2005}, pages = {91-101}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1063} }
Grażyna Mazurkiewicz. On SαS density function. Discussiones Mathematicae Probability and Statistics, Tome 25 (2005) pp. 91-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1063/
[000] [1] W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, John Wiley, New York 1966. | Zbl 0138.10207
[001] [2] E. Lukács, Characteristic Functions, Griffin, London 1960. | Zbl 0087.33605
[002] [3] J.K. Misiewicz and R.M. Cooke, Isotropic sequences of random variables and stochastic rescaling, Theor. Probability and Math. Statist., Amer. Math. Soc. 2001. | Zbl 0955.60053
[003] [4] G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York 1994. | Zbl 0925.60027
[004] [5] V.M. Zolotarev, One-dimensional Stable Distributions, Transl. Math. Monographs 65, Amer. Math. Soc., Providence.