Estimation of the hazard rate function with a reduction of bias and variance at the boundary
Bożena Janiszewska ; Roman Różański
Discussiones Mathematicae Probability and Statistics, Tome 25 (2005), p. 5-37 / Harvested from The Polish Digital Mathematics Library

In the article, we propose a new estimator of the hazard rate function in the framework of the multiplicative point process intensity model. The technique combines the reflection method and the method of transformation. The new method eliminates the boundary effect for suitably selected transformations reducing the bias at the boundary and keeping the asymptotics of the variance. The transformation depends on a pre-estimate of the logarithmic derivative of the hazard function at the boundary.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:287673
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1058,
     author = {Bo\.zena Janiszewska and Roman R\'o\.za\'nski},
     title = {Estimation of the hazard rate function with a reduction of bias and variance at the boundary},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {25},
     year = {2005},
     pages = {5-37},
     zbl = {1102.62106},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1058}
}
Bożena Janiszewska; Roman Różański. Estimation of the hazard rate function with a reduction of bias and variance at the boundary. Discussiones Mathematicae Probability and Statistics, Tome 25 (2005) pp. 5-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1058/

[000] [1] O. Aalen, Nonparametric inference for a family of counting processes, The Annals of Statistics 6 (4) (1978), 701-726. | Zbl 0389.62025

[001] [2] P. Andersen, O. Borgan, R. Gill and N. Keiding, Statistical Models Based on Counting Processes, Springer-Verlag, New York 1993. | Zbl 0769.62061

[002] [3] B. Janiszewska and R. Różański, Transformed diffeomorphic kernel estimation of hazard rate function, Demonstratio Mathematica 34 (2) (2001), 447-460. | Zbl 0999.62029

[003] [4] H. Ramlau-Hansen, Smoothing counting process intensities by means of kernel funcions, The Annals of Statistics 11 (2) (1983), 453-466.

[004] [5] S. Saoudi, F. Ghorbel and A. Hillion, Some statistical properties of the kernel-diffeomorphism estimator, Applied Stochastic Models and Data Analysis 13 (1997), 39-58. | Zbl 0924.62034

[005] [6] D. Ruppert and J.S. Marron, Transformations to reduce boundary bias in kernel density estimation, J. Roy. Statist. Soc. Ser. B, 56 (4) (1994), 653-671. | Zbl 0805.62046

[006] [7] E.F. Schuster, Incorporating support constraints into nonparametric estimators of densities, Comm. Statist. A - Theory Methods. 14 (1985), 1125-1136.

[007] [8] R.S. Liptser and A.N. Shiryayev, Statistics of Random Processes I. General Theory, Springer-Verlag, New York (1984) p. 17. | Zbl 0364.60004

[008] [9] M. Wand, J.S. Marron and D. Ruppert, Transformations in density estimation (with discussion), J. Amer. Statist. Assoc. 86 (1991), 343-361. | Zbl 0742.62046

[009] [10] S. Zhang, R.J. Karunamuni and M.C. Jones, An improved estimator of the density function at the boundary, J. Amer. Statist. Assoc. 94 (1999), 1231-1240. | Zbl 0994.62029