The paper discusses applications of permutation arguments in testing problems in linear models. Particular attention will be paid to the application in L₁-test procedures. Theoretical results will beaccompanied by a simulation study.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1051, author = {Marie Huskov\'a and Jan Picek}, title = {Some remarks on permutation type tests in linear models}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {24}, year = {2004}, pages = {151-181}, zbl = {1165.62315}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1051} }
Marie Husková; Jan Picek. Some remarks on permutation type tests in linear models. Discussiones Mathematicae Probability and Statistics, Tome 24 (2004) pp. 151-181. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1051/
[000] [1] J. Antoch and M. Husková, Detection of structural changes in regression, Tatra Mountains Publications 26 (2003), 201-215. | Zbl 1154.62350
[001] [2] B.M. Brown and J.S. Maritz, Distribution-free methods in regression, Australian Journal of Statistics 24 (1982), 318-331. | Zbl 0507.62038
[002] [3] B.S. Cade and J.D. Richards, Permutation tests for least absolute deviation regression, Biometrics 52 (1996), 886-902. | Zbl 0875.62170
[003] [4] D. De Angelis, P. Hall and G.A. Young, Analytical and bootstrap approximations to estimators in l1 regression, Journal of the American Statistical Association 88 (1993), 1310-1316. | Zbl 0792.62029
[004] [5] D. Edwards, Exact simulation-based inference: A survey, with additions, Journal of Statistical Computation and Simulation 22 (1985), 307-326. | Zbl 0605.62017
[005] [6] B, Efron and R.J. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, New York 1993. | Zbl 0835.62038
[006] [7] P. Good, Permutation Tests, Springer Verlag, New York 1994. | Zbl 0815.62027
[007] [8] J. Hájek, Some extensions of the Wald-Wolfowitz-Noether theorem, Annals of Mathematical Statistics 32 (1961), 506-523. | Zbl 0107.13404
[008] [9] M. Husková, The rate of convergence of simple linear rank statistics, Annals of Statistics 5 (1977), 658-670. | Zbl 0365.62039
[009] [10] M. Husková, Permutation principle and bootstrap in change point analysis, Asymptotic Methods in Stochastics. Fields Institute Communications, eds. L. Horváth and B. Szyszkowicz 44 pp, 273-292. | Zbl 1067.62044
[010] [11] M. Husková and J. Picek, M-tests for detection of structural changes in regression, Statistical Data Analysis Based on the L₁-Norm and RelatedMethods, ed. Y. Dodge, Birhäuser, Basel (2002), 213-229. | Zbl 1145.62330
[011] [12] P.E. Kennedy, Randomization tests in econometrics, Journal of business and Economic Statistics 13 (1995), 85-94.
[012] [13] R. Koenker and G. Basset, Tests of linear hypotheses and L₁- regression, Econometrica 50 (1982), 1577-1583. | Zbl 0497.62057
[013] [14] E.L. Lehmann, Theory of Point Estimation, Wadworth & Brooks/Cole, California 1991. | Zbl 0801.62025
[014] [15] B.F.J. Manly, Randomization and Monte-Carlo Methods in Biology, London: Chapman and Hall 1991. | Zbl 0726.92001
[015] [16] D.N. Politis, J.P. Romano and M. Wolf, Subsampling, Springer Verlag, New York 1999.
[016] [17] C.J.F. ter Braak, Permutations versus bootstrap significance in multiple regression and ANOVA, Bootstrapping and Related Techniques, eds. K.H. Jockel, G. Rotheand W. Sendler, Berlin-Springer-Verlag (1992), 79-86.
[017] [18] Shao Jun and Tu Dongsheng, The Jackknife and Bootstrap, Springer Verlag, New York 1995. | Zbl 0947.62501
[018] [19] W.J. Welsh, Construction of permutation tests, Journal of the AmericanStatistical Association 85 (1990), 693-689.