On some properties of ML and REML estimators in mixed normal models with two variance components
Stanisław Gnot ; Andrzej Michalski ; Agnieszka Urbańska-Motyka
Discussiones Mathematicae Probability and Statistics, Tome 24 (2004), p. 109-126 / Harvested from The Polish Digital Mathematics Library

In the paper, the problem of estimation of variance components σ₁² and σ₂² by using the ML-method and REML-method in a normal mixed linear model 𝒩 {Y,E(Y) = Xβ, Cov(Y) = σ₁²V + σ₂²Iₙ} is considered. This paper deal with properties of estimators of variance components, particularly when an explicit form of these estimators is unknown. The conditions when the ML and REML estimators can be expressed in explicit forms are given, too. The simulation study for one-way classification unbalanced random model together with a new proposition of approximation of expectation and variances of ML and REML estimators are shown. Numerical calculations with reference to the generalized Fisher's information are also given.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:287723
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1049,
     author = {Stanis\l aw Gnot and Andrzej Michalski and Agnieszka Urba\'nska-Motyka},
     title = {On some properties of ML and REML estimators in mixed normal models with two variance components},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {24},
     year = {2004},
     pages = {109-126},
     zbl = {1052.62029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1049}
}
Stanisław Gnot; Andrzej Michalski; Agnieszka Urbańska-Motyka. On some properties of ML and REML estimators in mixed normal models with two variance components. Discussiones Mathematicae Probability and Statistics, Tome 24 (2004) pp. 109-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1049/

[000] [1] D. Birkes and S.S. Wulff, Existence of maximum likelihood estimates in normal variance-components models, J. Statist. Plann. Inference 113 (2003), 35-47. | Zbl 1031.62042

[001] [2] T. Caliński and S. Kageyama, Block Designs: A Randomization Approach, Vol. I: Analysis, Lecture Notes in Statistics, Springer 2000.

[002] [3] M.Y. Elbassouni, On the existency of explicit restricted maximim likelihood estimators in multivariate normal models, Sankhyā Series B 45 (1983), 303-305.

[003] [4] S. Gnot, D. Stemann, G. Trenkler and A. Urbańska-Motyka, On maximum likelihood estimators in multivariate normal mixed models with two variance components, Tatra Mountains Mathematical Publications 17 (1999), 111-119. | Zbl 0987.62041

[004] [5] S. Gnot, D. Stemann, G. Trenkler and A. Urbańska-Motyka, Maximum likelihood estimators in mixed normal models with two variance components, Statistics 36 (4) (2002), 283-302. | Zbl 1003.62017

[005] [6] E.L. Lehman, Theory of Point Estimation, Wiley, New York 1983.

[006] [7] A. Olsen, J. Seely and D. Birkes, Invariant quadratic unbiased estimation for two variance components, Ann. Statist. 4 (1976), 878-890. | Zbl 0344.62060

[007] [8] H.D. Patterson and R. Thompson, Recovery of intra-block information when block sizes are unequal, Biometrika 58 (1971), 545-554. | Zbl 0228.62046

[008] [9] H.D. Patterson and R. Thompson, Maximum likelihood estimation of components of variance, Proceedings of 8th Biometric Conference (1975), 197-207. | Zbl 0332.62053

[009] [10] C.R. Rao, MINQUE theory and its relation to ML and MML estimation of variance components, Sankhyā Series B 41 (1979), 138-153. | Zbl 0485.62066

[010] [11] C.R. Rao and J. Kleffe, Estimation of Variance Components and Applications, North Holland, Amsterdam 1988. | Zbl 0645.62073

[011] [12] Poduri S.R.S. Rao, Variance Components Estimation, Mixed Models, Methodologies and Applications, Chapman and Hall, London, Weinheim, New York, Tokyo, Melbourne, Madras 1997. | Zbl 0996.62501

[012] [13] S.R. Searle, G. Casella and Ch.E. McCulloch, Variance Components, Wiley, New York 1992.

[013] [14] J. Seely, Minimal sufficient statistics and completeness for multivariate normal families, Sankhyā Ser.A 39 (1977), 170-185. | Zbl 0409.62004

[014] [15] G.W. Snedecor and W.G. Cochran, Statistical Methods (8th ed.), Ames, IA: Iowa State University Press 1989. | Zbl 0727.62003

[015] [16] S.E. Stern and A.H. Welsh, Likelihood inference for small variance components, The Canadian Journal of Statistics 28 (2000), 517-532. | Zbl 0958.62025

[016] [17] W.H. Swallow and J.F. Monahan, Monte Carlo comparison of ANOVA, MIVQUE, REML, and ML estimators of variance components, Technometrics 26 (1984), 4, 7-57. | Zbl 0548.62051

[017] [18] T.H. Szatrowski, Necessary and sufficient conditions for explicit solutions in the multivariate normal estimation problem for patterned means and covariances, Ann. Statist. 8 (1980), 803-810. | Zbl 0497.62045

[018] [19] T.H. Szatrowski and J.J. Miller, Explicit maximum likelihood estimates from balanced data in the mixed model of the analysis of variance, Ann. Statist. 8 (1980), 811-819. | Zbl 0465.62069