In the article, we consider construction of prediction intervals for stationary time series using Bühlmann's [8], [9] sieve bootstrapapproach. Basic theoretical properties concerning consistency are proved. We extend the results obtained earlier by Stine [21], Masarotto and Grigoletto [13] for an autoregressive time series of finite order to the rich class of linear and invertible stationary models. Finite sample performance of the constructed intervals is investigated by computer simulations.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1044, author = {Roman R\'o\.za\'nski and Adam Zagda\'nski}, title = {On the consistency of sieve bootstrap prediction intervals for stationary time series}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {24}, year = {2004}, pages = {5-40}, zbl = {1063.62129}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1044} }
Roman Różański; Adam Zagdański. On the consistency of sieve bootstrap prediction intervals for stationary time series. Discussiones Mathematicae Probability and Statistics, Tome 24 (2004) pp. 5-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1044/
[000] [1] A.M. Alonso, D. Peña and J. Romo, Introducing model uncertainty in time series bootstrap, Working Paper, Statistics and Econometric Series, Universidad Carlos III de Madrid 9 (2001), 1-14.
[001] [2] A.M. Alonso, D. Peña and J. Romo, Forecasting time series with sieve bootstrap, Journal of Statistical Planning and Inference, 100 (2002), 1-11. | Zbl 1007.62077
[002] [3] T. Anderson, The Statistical Analysis of Time Series, Wiley, New York 1971. | Zbl 0225.62108
[003] [4] Y.K. Belyaev, The continuity theorem and its application to resampling from sums of random variables, Theory of Stochastic Processes 3 (19) (1997), 100-109. | Zbl 0946.60016
[004] [5] Y.K. Belyaev and S. Sjöstedt - de Luna, Weakly approaching sequences of random distributions, Journal of Applied Probability 37 (2000), 807-822. | Zbl 0976.60009
[005] [6] P. Brockwell and R. Davis, Time Series Theory and Method, Springer-Verlag 1987. | Zbl 0604.62083
[006] [7] P. Bühlmann, Moving-average representation of autoregressive approximations, Stochastic Processes and their Applications 60 (1995), 331-342. | Zbl 0847.60027
[007] [8] P. Bühlmann, Sieve bootstrap for time series, Bernouli 3 (2) (1997), 123-148. | Zbl 0874.62102
[008] [9] P. Bühlmann, Sieve bootstrap for smoothing in nonstationary time series, The Annals of Statistics 26 (1) (1998), 48-83. | Zbl 0934.62039
[009] [10] P. Bühlmann, Bootstraps for Time Series, Statistical Science 17 (1) (2002), 52-72. | Zbl 1013.62048
[010] [11] R. Cao, et al, Saving Computer time in constructing consistent bootstrap prediction intervals for autoregressive processes, Comm. Statist. Simulation Comput. 26 (3) (1997), 961-978. | Zbl 0925.62395
[011] [12] M. Deistler and E.J. Hannan, The Statistical Theory of Linear Systems, Wiley, New York 1988. | Zbl 0641.93002
[012] [13] M. Grigoletto, Bootstrap prediction intervals for autoregressions: some alternatives, International Journal of Forecasting 14 (1998), 447-456.
[013] [14] U. Grenander, Abstract Inference, Wiley, New York 1981.
[014] [15] E.J. Hannan and L. Kavalieris, Regressions, autoregression models, Journal Time Series Analysis 7 (1986), 27-49. | Zbl 0588.62163
[015] [16] J.H. Kim, Bootstrap-after-bootstrap prediction intervals for autoregressive models, Journal of Business & Economic Statistics 19 (1) (2001), 117-128.
[016] [17] G. Masarotto, Bootstrap prediction intervals for autoregressions, International Journal of Forecasting 6 (1990), 229-239.
[017] [18] A.M. Polansky, Stabilizing bootstrap-t confidence intervals for small samples, The Canadian Journal of Statistics 28 (3) (2000), 501-516. | Zbl 0961.62035
[018] [19] D.N. Politis, J.P. Romano and M. Wolf, Subsampling, Springer-Verlag, New York 1999.
[019] [20] J. Shao and D. Tu, The Jacknife and Bootstrap, Springer-Verlag, New York 1995.
[020] [21] R.A. Stine, Estimating properties of autoregressive forecast, Journal of the American Statistical Association 82 (400) (1987), 1073-1078.
[021] [22] L.A. Thombs and R. Schucany, Bootstrap prediction intervals for autoregression, Journal of the American Statistical Association 85 (410) (1990), 486-492. | Zbl 0705.62089