On the consistency of sieve bootstrap prediction intervals for stationary time series
Roman Różański ; Adam Zagdański
Discussiones Mathematicae Probability and Statistics, Tome 24 (2004), p. 5-40 / Harvested from The Polish Digital Mathematics Library

In the article, we consider construction of prediction intervals for stationary time series using Bühlmann's [8], [9] sieve bootstrapapproach. Basic theoretical properties concerning consistency are proved. We extend the results obtained earlier by Stine [21], Masarotto and Grigoletto [13] for an autoregressive time series of finite order to the rich class of linear and invertible stationary models. Finite sample performance of the constructed intervals is investigated by computer simulations.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:287725
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1044,
     author = {Roman R\'o\.za\'nski and Adam Zagda\'nski},
     title = {On the consistency of sieve bootstrap prediction intervals for stationary time series},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {24},
     year = {2004},
     pages = {5-40},
     zbl = {1063.62129},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1044}
}
Roman Różański; Adam Zagdański. On the consistency of sieve bootstrap prediction intervals for stationary time series. Discussiones Mathematicae Probability and Statistics, Tome 24 (2004) pp. 5-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1044/

[000] [1] A.M. Alonso, D. Peña and J. Romo, Introducing model uncertainty in time series bootstrap, Working Paper, Statistics and Econometric Series, Universidad Carlos III de Madrid 9 (2001), 1-14.

[001] [2] A.M. Alonso, D. Peña and J. Romo, Forecasting time series with sieve bootstrap, Journal of Statistical Planning and Inference, 100 (2002), 1-11. | Zbl 1007.62077

[002] [3] T. Anderson, The Statistical Analysis of Time Series, Wiley, New York 1971. | Zbl 0225.62108

[003] [4] Y.K. Belyaev, The continuity theorem and its application to resampling from sums of random variables, Theory of Stochastic Processes 3 (19) (1997), 100-109. | Zbl 0946.60016

[004] [5] Y.K. Belyaev and S. Sjöstedt - de Luna, Weakly approaching sequences of random distributions, Journal of Applied Probability 37 (2000), 807-822. | Zbl 0976.60009

[005] [6] P. Brockwell and R. Davis, Time Series Theory and Method, Springer-Verlag 1987. | Zbl 0604.62083

[006] [7] P. Bühlmann, Moving-average representation of autoregressive approximations, Stochastic Processes and their Applications 60 (1995), 331-342. | Zbl 0847.60027

[007] [8] P. Bühlmann, Sieve bootstrap for time series, Bernouli 3 (2) (1997), 123-148. | Zbl 0874.62102

[008] [9] P. Bühlmann, Sieve bootstrap for smoothing in nonstationary time series, The Annals of Statistics 26 (1) (1998), 48-83. | Zbl 0934.62039

[009] [10] P. Bühlmann, Bootstraps for Time Series, Statistical Science 17 (1) (2002), 52-72. | Zbl 1013.62048

[010] [11] R. Cao, et al, Saving Computer time in constructing consistent bootstrap prediction intervals for autoregressive processes, Comm. Statist. Simulation Comput. 26 (3) (1997), 961-978. | Zbl 0925.62395

[011] [12] M. Deistler and E.J. Hannan, The Statistical Theory of Linear Systems, Wiley, New York 1988. | Zbl 0641.93002

[012] [13] M. Grigoletto, Bootstrap prediction intervals for autoregressions: some alternatives, International Journal of Forecasting 14 (1998), 447-456.

[013] [14] U. Grenander, Abstract Inference, Wiley, New York 1981.

[014] [15] E.J. Hannan and L. Kavalieris, Regressions, autoregression models, Journal Time Series Analysis 7 (1986), 27-49. | Zbl 0588.62163

[015] [16] J.H. Kim, Bootstrap-after-bootstrap prediction intervals for autoregressive models, Journal of Business & Economic Statistics 19 (1) (2001), 117-128.

[016] [17] G. Masarotto, Bootstrap prediction intervals for autoregressions, International Journal of Forecasting 6 (1990), 229-239.

[017] [18] A.M. Polansky, Stabilizing bootstrap-t confidence intervals for small samples, The Canadian Journal of Statistics 28 (3) (2000), 501-516. | Zbl 0961.62035

[018] [19] D.N. Politis, J.P. Romano and M. Wolf, Subsampling, Springer-Verlag, New York 1999.

[019] [20] J. Shao and D. Tu, The Jacknife and Bootstrap, Springer-Verlag, New York 1995.

[020] [21] R.A. Stine, Estimating properties of autoregressive forecast, Journal of the American Statistical Association 82 (400) (1987), 1073-1078.

[021] [22] L.A. Thombs and R. Schucany, Bootstrap prediction intervals for autoregression, Journal of the American Statistical Association 85 (410) (1990), 486-492. | Zbl 0705.62089