Autoregressive error-processes, cubic splines and tridiagonal matrices
Hilmar Drygas
Discussiones Mathematicae Probability and Statistics, Tome 23 (2003), p. 147-165 / Harvested from The Polish Digital Mathematics Library

In the paper formulate for the inversion of some tridiagonal matrices are given. The results can be applied to the autoregressive processes.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:287736
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1041,
     author = {Hilmar Drygas},
     title = {Autoregressive error-processes, cubic splines and tridiagonal matrices},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {23},
     year = {2003},
     pages = {147-165},
     zbl = {1330.62336},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1041}
}
Hilmar Drygas. Autoregressive error-processes, cubic splines and tridiagonal matrices. Discussiones Mathematicae Probability and Statistics, Tome 23 (2003) pp. 147-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1041/

[000] [1] H. Drygas, Sufficiency and completeness in the general Gauss-Markov model, Sankhya Ser A 45 (1984), 88-98. | Zbl 0535.62007

[001] [2] H. Drygas, The inverse of a tridiagonal matrix, Kasseler Mathematische Schriften, forthcoming (2003). | Zbl 1330.62336

[002] [3] F. Graybill, Matrices with Applications in Statistics, Wadsworth & Brooks/Cole, Advanced Books & Software, Pacific Grove, California 1963.

[003] [4] R. Nabben, Two sided formels on the inverses of diagonally dominant tridiagonal matrices, Linear Algebra and its Applications 287 (1999), 289-305. | Zbl 0951.15005

[004] [5] C.R. Rao, Linear statistical inference and its applications. John Wiley & Sons Inc., New York-London-Sydney-Toronto 1973. | Zbl 0256.62002

[005] [6] P. Schönfeld, Methoden der Ökonometrie. Band I, Verlag Franz Vahlen GmbH, Berlin und Frankfurt am Main 1969.

[006] [7] H.R. Schwarz, Numerische Mathematik. R.G. Teubner-Verlag, Stuttgart 1988.

[007] [8] J.Stoer, Numerische Mathematik 1. 5. Auflage, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong 1989.

[008] [9] W. Törnig, P. Spellucci, Numerische Mathematik für Ingenieure und Physiker. Band 2: Numerische Methoden der Analysis. Springer Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong 1990.