In the paper formulate for the inversion of some tridiagonal matrices are given. The results can be applied to the autoregressive processes.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1041, author = {Hilmar Drygas}, title = {Autoregressive error-processes, cubic splines and tridiagonal matrices}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {23}, year = {2003}, pages = {147-165}, zbl = {1330.62336}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1041} }
Hilmar Drygas. Autoregressive error-processes, cubic splines and tridiagonal matrices. Discussiones Mathematicae Probability and Statistics, Tome 23 (2003) pp. 147-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1041/
[000] [1] H. Drygas, Sufficiency and completeness in the general Gauss-Markov model, Sankhya Ser A 45 (1984), 88-98. | Zbl 0535.62007
[001] [2] H. Drygas, The inverse of a tridiagonal matrix, Kasseler Mathematische Schriften, forthcoming (2003). | Zbl 1330.62336
[002] [3] F. Graybill, Matrices with Applications in Statistics, Wadsworth & Brooks/Cole, Advanced Books & Software, Pacific Grove, California 1963.
[003] [4] R. Nabben, Two sided formels on the inverses of diagonally dominant tridiagonal matrices, Linear Algebra and its Applications 287 (1999), 289-305. | Zbl 0951.15005
[004] [5] C.R. Rao, Linear statistical inference and its applications. John Wiley & Sons Inc., New York-London-Sydney-Toronto 1973. | Zbl 0256.62002
[005] [6] P. Schönfeld, Methoden der Ökonometrie. Band I, Verlag Franz Vahlen GmbH, Berlin und Frankfurt am Main 1969.
[006] [7] H.R. Schwarz, Numerische Mathematik. R.G. Teubner-Verlag, Stuttgart 1988.
[007] [8] J.Stoer, Numerische Mathematik 1. 5. Auflage, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong 1989.
[008] [9] W. Törnig, P. Spellucci, Numerische Mathematik für Ingenieure und Physiker. Band 2: Numerische Methoden der Analysis. Springer Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong 1990.