In this paper, we consider a symmetric α-stable p-sub-stable two-dimensional random vector. Our purpose is to show when the function is a characteristic function of such a vector for some p and α. The solution of this problem we can find in [3], in the language of isometric embeddings of Banach spaces. Our proof is based on simple properties of stable distributions and some characterization given in [4].
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1037, author = {Marta Borowiecka-Olszewska and Jolanta K. Misiewicz}, title = {About the density of spectral measure of the two-dimensional SaS random vector}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {23}, year = {2003}, pages = {77-81}, zbl = {1134.60309}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1037} }
Marta Borowiecka-Olszewska; Jolanta K. Misiewicz. About the density of spectral measure of the two-dimensional SaS random vector. Discussiones Mathematicae Probability and Statistics, Tome 23 (2003) pp. 77-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1037/
[000] [1] P. Billingsley, Probability and Measure, John Wiley & Sons, New York 1979. | Zbl 0411.60001
[001] [2] W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, John Wiley & Sons, New York 1966. | Zbl 0138.10207
[002] [3] R. Grzaślewicz and J.K. Misiewicz, Isometric embeddings of subspaces of Lα-spaces and maximal representation for symmetric stable processes, Functional Analysis (1996), 179-182. | Zbl 0890.46021
[003] [4] J.K. Misiewicz and S. Takenaka, Some remarks on SαS, β-sub-stable random vectors, preprint.
[004] [5] J.K. Misiewicz, Sub-stable and pseudo-isotropic processes. Connections with the geometry of sub-spaces of Lα -spaces, Dissertationes Mathematicae CCCLVIII, 1996. | Zbl 0858.46008
[005] [6] J.K. Misiewicz and Cz. Ryll-Nardzewski, Norm dependent positive definite functions and measures on vector spaces, Probability Theory on Vector Spaces IV, ańcut 1987, Springer Verlag LNM 1391, 1989, 284-292.
[006] [7] G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman & Hall, London 1993. | Zbl 0925.60027