The Varopoulos-Hardy-Littlewood theory and the spectral analysis are used to estimate the tail of the distribution of the first exit time of α-stable processes.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1031, author = {Wies\l aw Cupa\l a}, title = {Estimates for the distribution of the first exit time of $\alpha$-stable processes}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {22}, year = {2002}, pages = {53-59}, zbl = {1036.60042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1031} }
Wiesław Cupała. Estimates for the distribution of the first exit time of α-stable processes. Discussiones Mathematicae Probability and Statistics, Tome 22 (2002) pp. 53-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1031/
[000] [1] D. Levin and M. Solomyak, Rozenblum-Lieb-Cwikel inequality for Markov generators, J. d'Anal. Math. 71 (1997), 173-193. | Zbl 0910.47017
[001] [2] N.T. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), 240-260. | Zbl 0608.47047