The testing problem on the first-order autoregressive parameter in finite sample case is considered. The innovations are distributed according to the exponential distribution. The aim of this paper is to study how much the size of this test changes when, at some time k, an innovation outlier contaminant occurs. We show that the test is rather sensitive to these changes.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1017, author = {Hocine Fellag}, title = {Testing on the first-order autoregressive model with contaminated exponential white noise finite sample case}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {21}, year = {2001}, pages = {11-20}, zbl = {0984.62064}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1017} }
Hocine Fellag. Testing on the first-order autoregressive model with contaminated exponential white noise finite sample case. Discussiones Mathematicae Probability and Statistics, Tome 21 (2001) pp. 11-20. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1017/
[000] [1] C.B. Bell and E.P. Smith, Inference for non-negative autoregressive schemes, Communication in Statistics, Theory and Methods, 15 (8) (1986), 2267-2293. | Zbl 0604.62087
[001] [2] Y. Berkoun, H. Fellag, M. Ibazizen and R. Zieliński, Maximal size of the student and the Anova tests under exactly one contaminant, Journal of Mathematical Sciences 81, (5) (1996), 2900-2904. | Zbl 0871.62020
[002] [3] A.J. Fox, Outliers in time series, J. Roy. Stat. Soc. 34 (B) (1972), 350-363. | Zbl 0249.62089
[003] [4] D.P. Gaver and P.A.W. Lewis, First-order autoregressive Gamma sequences and point process, Adv. Appl. Prob. 12 (1980), 727-745. | Zbl 0453.60048
[004] [5] G. Saporta, Probabilités, Analyses des données et Statistique, Technip Ed. (1990).
[005] [6] M.A.A. Turkman, Bayesian analysis of an autoregressive process with exponential white noise, Statistics 21 (4) (1990), 601-608. | Zbl 0723.62051