On risk reserve under distribution constraints
Mariusz Michta
Discussiones Mathematicae Probability and Statistics, Tome 20 (2000), p. 249-260 / Harvested from The Polish Digital Mathematics Library

The purpose of this work is a study of the following insurance reserve model: R(t)=η+0tp(s,R(s))ds+0tσ(s,R(s))dWs-Z(t), t ∈ [0,T], P(η ≥ c) ≥ 1-ϵ, ϵ ≥ 0. Under viability-type assumptions on a pair (p,σ) the estimation γ with the property: inf0tTPR(t)cγ is considered.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:287660
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1015,
     author = {Mariusz Michta},
     title = {On risk reserve under distribution constraints},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {20},
     year = {2000},
     pages = {249-260},
     zbl = {0984.60048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1015}
}
Mariusz Michta. On risk reserve under distribution constraints. Discussiones Mathematicae Probability and Statistics, Tome 20 (2000) pp. 249-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1015/

[000] [1] J.P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 595-613. | Zbl 0741.60046

[001] [2] J.P. Aubin and G. Da Prato, The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl. 16 (1) (1998), 1-15. | Zbl 0931.60059

[002] [3] R. Bergmann and D. Stoyan, On exponential bounds for the waiting time distribution function in GI/G/1, Journal of Applied Probability 13 (1976), 411-417. | Zbl 0344.60057

[003] [4] P. Billingsley, Convergence of Probability Measures, J. Wiley and Sons, New York and London 1968. | Zbl 0172.21201

[004] [5] F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbated by diffiusion, Insurance: Mathematics and Economics 10 (1991), 51-59. | Zbl 0723.62065

[005] [6] S. Gauthier and L. Thibault, Viability for constrained stochastic differential equations, Differential and Integral Equations 6 (6) 1395-1414. | Zbl 0780.93085

[006] [7] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin-New York 1988. | Zbl 0638.60065

[007] [8] M. Kisielewicz, Viability theorems for stochastic inclusions, Discuss. Math. Diff. Incl. 15 (1) (1995), 61-75. | Zbl 0844.93072

[008] [9] T. Kurtz and Ph. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab. 19 (3) (1991), 1035-1070. | Zbl 0742.60053

[009] [10] F. Lundberg, I, Approximerad Framställning av Sannonlikhetsfunktionen, II, A°terförsäkering av Kollektivresker, Almqvist and Wiksell, Upsala 1903.

[010] [11] L. Mazliak, A note on weak viability for controlled diffusion, Prepublications du Lab. de Probab. Universite de Paris 6, 7, 513 (1999).

[011] [12] M. Michta, A note on viability under distribution constrains, Discuss. Math. Algebra and Stochastic Methods 18 (2) (1998), 215-225. | Zbl 0938.60050

[012] [13] S.S. Petersen, Calculation of ruin probabilities when the premium depends on the current reserve, Scand. Act. J. (1990), 147-159. | Zbl 0711.62097

[013] [14] Ph. Protter, A connection between the expansion of filtrations and Girsanov`s theorem, Stochastic partial differential equations, Lecture Notes in Math. 1930 Springer, Berlin-New York, (1989), 221-224.

[014] [15] Ph. Protter, Stochastic Integration and Differential Equations, Springer, Berlin-New York 1990.

[015] [16] M. Yor, Grossissement de filtrations et absolue continuite de noyaux, Springer, Berlin-New York, Lecture Notes in Math. 1118 (1985), 6-15. | Zbl 0576.60038