Entropy maximization subject to known expected values is extended to the case where the random variables involved may take on positive infinite values. As a result, an arbitrary probability distribution on a finite set may be realized as a canonical distribution. The Rényi entropy of the distribution arises as a natural by-product of this realization. Starting with the uniform distributionon a proper subset of a set, the canonical distribution of equilibriumstatistical mechanics may be used to exhibit an elementary phase transition, characterized by discontinuity of the partition function.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1009, author = {K.B. Athreya and J.D.H. Smith}, title = {Canonical distributions and phase transitions}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {20}, year = {2000}, pages = {167-176}, zbl = {0978.82036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1009} }
K.B. Athreya; J.D.H. Smith. Canonical distributions and phase transitions. Discussiones Mathematicae Probability and Statistics, Tome 20 (2000) pp. 167-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1009/
[000] [1] J.W. Gibbs, Elementary Principles in Statistical Mechanics Developed with Especial Reference to the Rational Foundation of Thermodynamics, Yale University Press New Haven, CT 1902. | Zbl 33.0708.01
[001] [2] E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957), 620. | Zbl 0084.43701
[002] [3] M. Tribus, Rational Descriptions, Decisions and Designs Pergamon, Elmsford, NY 1969.
[003] [4] R.D. Levine and M. Tribus (eds.), The Maximum Entropy Formalism, MIT Press, Cambridge, MA 1979.
[004] [5] J.H. Justice (ed.), Maximum Entropy and Bayesian Methods in Applied Statistics, Cambridge University Press, Cambridge 1986.
[005] [6] W.T. Grandy, Jr, Foundations of Statistical Mechanics, Volume I, Reidel, Dordrecht 1987. | Zbl 0721.60119
[006] [7] A. Rényi, On measures of entropy and information, Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability 1960, Volume 1, University of California Press, Berkeley, CA 1961. | Zbl 0115.35502
[007] [8] J. Aczél, Measuring information beyond information theory - why some generalized information measures may be useful, others not, Aequationes Math. 27 (1984), 1. | Zbl 0547.94004
[008] [9] W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik, ``Handbuch der Physik, Bd. 24/1 Quantentheorie'', Springer, Berlin 1933. | Zbl 0007.13504
[009] [10] C. Shannon, A mathematical theory of communication, Bell Systems Technical Journal 23 (1948), 349. | Zbl 1154.94303
[010] [11] K.B. Athreya, Entropy maximization, IMA Preprint Series # 1231, Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 1994.