A graph is k-degenerate if its vertices can be successively deleted so that when deleted, each has degree at most k. These graphs were introduced by Lick and White in 1970 and have been studied in several subsequent papers. We present sharp bounds on the diameter of maximal k-degenerate graphs and characterize the extremal graphs for the upper bound. We present a simple characterization of the degree sequences of these graphs and consider related results. Considering edge coloring, we conjecture that a maximal k-degenerate graph is class two if and only if it is overfull, and prove this in some special cases. We present some results on decompositions and arboricity of maximal k-degenerate graphs and provide two characterizations of the subclass of k-trees as maximal k-degenerate graphs. Finally, we define and prove a formula for the Ramsey core numbers.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1637, author = {Allan Bickle}, title = {Structural results on maximal k-degenerate graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {659-676}, zbl = {1293.05313}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1637} }
Allan Bickle. Structural results on maximal k-degenerate graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 659-676. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1637/
[000] [1] A. Bickle, The k-Cores of a graph. Ph.D. Dissertation, Western Michigan University, 2010.
[001] [2] M. Borowiecki, J. Ivančo, P. Mihók and G. Semanišin, Sequences realizable by maximal k-degenerate graphs, J. Graph Theory 19 (1995) 117-124, doi: 10.1002/jgt.3190190112. | Zbl 0813.05061
[002] [3] G. Chartrand and L. Lesniak, Graphs and Digraphs, (4th ed.) (CRC Press, 2005). | Zbl 1057.05001
[003] [4] B. Chen, M. Matsumoto, J. Wang, Z. Zhang and J. Zhang, A short proof of Nash-Williams' Theorem for the arboricity of a graph, Graphs Combin. 10 (1994) 27-28, doi: 10.1007/BF01202467. | Zbl 0798.05042
[004] [5] A.G. Chetwynd and A.J.W. Hilton, Star multigraphs with 3 vertices of maximum degree, Math. Proc. Cambridge Math. Soc. 100 (1986) 303-317, doi: 10.1017/S030500410006610X.
[005] [6] G.A. Dirac, Homomorphism theorems for graphs, Math. Ann. 153 (1964) 69-80, doi: 10.1007/BF01361708. | Zbl 0115.41005
[006] [7] Z. Filáková, P. Mihók and G. Semanišin, A note on maximal k-degenerate graphs, Math. Slovaca 47 (1997) 489-498. | Zbl 0937.05040
[007] [8] Z. Goufei, A note on graphs of class 1, Discrete Math. 263 (2003) 339-345, doi: 10.1016/S0012-365X(02)00793-8.
[008] [9] S. Hakimi, J. Mitchem and E. Schmeichel, Short proofs of theorems of Nash-Williams and Tutte, Ars Combin. 50 (1998) 257-266. | Zbl 0963.05110
[009] [10] R. Klein and J. Schonheim, Decomposition of Kₙ into degenerate graphs, Combinatorics and Graph Theory Hefei 6-27, World Scientific. Singapore (New Jersey, London, Hong Kong, April 1992) 141-155.
[010] [11] D.R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096, doi: 10.4153/CJM-1970-125-1. | Zbl 0202.23502
[011] [12] W. Mader, 3n-5 edges do force a subdivision of K₅, Combinatorica 18 (1998) 569-595, doi: 10.1007/s004930050041. | Zbl 0924.05039
[012] [13] J. Mitchem, Maximal k-degenerate graphs, Util. Math. 11 (1977) 101-106. | Zbl 0348.05109
[013] [14] C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc. 39 (1964) 12, doi: 10.1112/jlms/s1-39.1.12. | Zbl 0119.38805
[014] [15] H.P. Patil, A note on the edge-arboricity of maximal k-degenerate graphs, Bull. Malays. Math Sci. Soc.(2) 7 (1984) 57-59.
[015] [16] S.B. Seidman, Network structure and minimum degree, Social Networks 5 (1983) 269-287, doi: 10.1016/0378-8733(83)90028-X.
[016] [17] J.M.S. Simões-Pereira, A survey of k-degenerate graphs, Graph Theory Newsletter 5 (1976) 1-7. | Zbl 0331.05135
[017] [18] West D., Introduction to Graph Theory, (2nd ed.) (Prentice Hall, 2001).