The i-chords of cycles and paths
Terry A. McKee
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 607-615 / Harvested from The Polish Digital Mathematics Library

An i-chord of a cycle or path is an edge whose endpoints are a distance i ≥ 2 apart along the cycle or path. Motivated by many standard graph classes being describable by the existence of chords, we investigate what happens when i-chords are required for specific values of i. Results include the following: A graph is strongly chordal if and only if, for i ∈ {4,6}, every cycle C with |V(C)| ≥ i has an (i/2)-chord. A graph is a threshold graph if and only if, for i ∈ {4,5}, every path P with |V(P)| ≥ i has an (i -2)-chord.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270941
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1629,
     author = {Terry A. McKee},
     title = {The i-chords of cycles and paths},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {607-615},
     zbl = {1294.05133},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1629}
}
Terry A. McKee. The i-chords of cycles and paths. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 607-615. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1629/

[000] [1] H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory (B) 41 (1986) 182-208, doi: 10.1016/0095-8956(86)90043-2. | Zbl 0605.05024

[001] [2] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999).

[002] [3] M.B. Cozzens and L.L. Kelleher, Dominating cliques in graphs, Discrete Math. 86 (1990) 101-116, doi: 10.1016/0012-365X(90)90353-J. | Zbl 0729.05043

[003] [4] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189, doi: 10.1016/0012-365X(83)90154-1. | Zbl 0514.05048

[004] [5] E. Howorka, A characterization of ptolemaic graphs, J. Graph Theory 5 (1981) 323-331, doi: 10.1002/jgt.3190050314. | Zbl 0437.05046

[005] [6] J. Liu and H.S. Zhou, Dominating subgraphs in graphs with some forbidden structures, Discrete Math. 135 (1994) 163-168, doi: 10.1016/0012-365X(93)E0111-G. | Zbl 0812.05052

[006] [7] N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics (North-Holland, Amsterdam, 1995). | Zbl 0852.05001

[007] [8] A. McKee, Constrained chords in strongly chordal and distance-hereditary graphs, Utilitas Math. 87 (2012) 3-12. | Zbl 1264.05112

[008] [9] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999). | Zbl 0945.05003

[009] [10] E.S. Wolk, The comparability graph of a tree, Proc. Amer. Math. Soc. 13 (1962) 789-795, doi: 10.1090/S0002-9939-1962-0172273-0. | Zbl 0109.16402