Generalized matrix graphs and completely independent critical cliques in any dimension
John J. Lattanzio ; Quan Zheng
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 583-602 / Harvested from The Polish Digital Mathematics Library

For natural numbers k and n, where 2 ≤ k ≤ n, the vertices of a graph are labeled using the elements of the k-fold Cartesian product Iₙ × Iₙ × ... × Iₙ. Two particular graph constructions will be given and the graphs so constructed are called generalized matrix graphs. Properties of generalized matrix graphs are determined and their application to completely independent critical cliques is investigated. It is shown that there exists a vertex critical graph which admits a family of k completely independent critical cliques for any k, where k ≥ 2. Some attention is given to this application and its relationship with the double-critical conjecture that the only vertex double-critical graph is the complete graph.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:271081
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1627,
     author = {John J. Lattanzio and Quan Zheng},
     title = {Generalized matrix graphs and completely independent critical cliques in any dimension},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {583-602},
     zbl = {1257.05043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1627}
}
John J. Lattanzio; Quan Zheng. Generalized matrix graphs and completely independent critical cliques in any dimension. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 583-602. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1627/

[000] [1] J. Balogh, A.V. Kostochka, N. Prince, and M. Stiebitz, The Erdös-Lovász Tihany conjecture for quasi-line graphs, Discrete Math., 309 (2009) 3985-3991, doi: 10.1016/j.disc.2008.11.016. | Zbl 1184.05039

[001] [2] R.A. Brualdi, Introductory Combinatorics, 5th ed, Pearson, (Upper Saddle River, 2010).

[002] [3] G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs, 5th ed, CRC Press, (Boca Raton, 2010).

[003] [4] G.A. Dirac, A theorem of R.L. Brooks and a conjecture of H. Hadwiger, Proc. Lond. Math. Soc. (3), 7 (1957) 161-195, doi: 10.1112/plms/s3-7.1.161.

[004] [5] G.A. Dirac, The number of edges in critical graphs, J. Reine Angew. Math. 268/269 (1974) 150-164. | Zbl 0298.05119

[005] [6] P. Erdös, Problems, in: Theory of Graphs, Proc. Colloq., Tihany, (Academic Press, New York, 1968) 361-362.

[006] [7] T.R. Jensen, Dense critical and vertex-critical graphs, Discrete Math. 258 (2002) 63-84, doi: 10.1016/S0012-365X(02)00262-5. | Zbl 1007.05048

[007] [8] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, New York, 1995).

[008] [9] K.-I. Kawarabayashi, A.S. Pedersen and B. Toft, Double-critical graphs and complete minors, Retrieved from http://adsabs.harvard.edu/abs/2008arXiv0810.3133K. | Zbl 1215.05069

[009] [10] A.V. Kostochka and M. Stiebitz, Colour-critical graphs with few edges, Discrete Math. 191 (1998) 125-137, doi: 10.1016/S0012-365X(98)00100-9. | Zbl 0955.05042

[010] [11] A.V. Kostochka and M. Stiebitz, On the number of edges in colour-critical graphs and hypergraphs, Combinatorica 20 (2000) 521-530, doi: 10.1007/s004930070005. | Zbl 0996.05046

[011] [12] J.J. Lattanzio, Completely independent critical cliques, J. Combin. Math. Combin. Comput. 62 (2007) 165-170. | Zbl 1137.05033

[012] [13] J.J. Lattanzio, Edge double-critical graphs, Journal of Mathematics and Statistics 6 (3) (2010) 357-358, doi: 10.3844/jmssp.2010.357.358. | Zbl 1227.05146

[013] [14] M. Stiebitz, K₅ is the only double-critical 5 -chromatic graph, Discrete Math. 64 (1987) 91-93, doi: 10.1016/0012-365X(87)90242-1.

[014] [15] B. Toft, On the maximal number of edges of critical k -chromatic graphs, Studia Sci. Math. Hungar. 5 (1970) 461-470. | Zbl 0228.05111