Light edges in 1-planar graphs with prescribed minimum degree
Dávid Hudák ; Peter Šugerek
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 545-556 / Harvested from The Polish Digital Mathematics Library

A graph is called 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree δ ≥ 4 contains an edge with degrees of its endvertices of type (4, ≤ 13) or (5, ≤ 9) or (6, ≤ 8) or (7,7). We also show that for δ ≥ 5 these bounds are best possible and that the list of edges is minimal (in the sense that, for each of the considered edge types there are 1-planar graphs whose set of types of edges contains just the selected edge type).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270992
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1625,
     author = {D\'avid Hud\'ak and Peter \v Sugerek},
     title = {Light edges in 1-planar graphs with prescribed minimum degree},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {545-556},
     zbl = {1262.05032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1625}
}
Dávid Hudák; Peter Šugerek. Light edges in 1-planar graphs with prescribed minimum degree. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 545-556. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1625/

[000] [1] O.V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps, Math. Slovaca 42 (1992) 129-142. | Zbl 0767.05039

[001] [2] R. Diestel, Graph Theory, Springer, Graduate Texts in Mathematics 173 (2nd ed., Springer-Verlag, New York, 2000).

[002] [3] I. Fabrici and S. Jendrol', An inequality concerning edges of minor weight in convex 3-polytopes, Discuss. Math. Graph Theory 16 (1996) 81-87, doi: 10.7151/dmgt.1024. | Zbl 0868.52004

[003] [4] I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007) 854-865, doi: 10.1016/j.disc.2005.11.056. | Zbl 1111.05026

[004] [5] D. Hudák and T. Madaras, On local properties of 1-planar graphs with high minimum degree, Ars Math. Contemp. 4 (2011) 245-254. | Zbl 1237.05053

[005] [6] D. Hudák and T. Madaras, On local structure of 1-planar graphs of minimum degree 5 and girth 4, Discuss. Math. Graph Theory 29 (2009) 385-400, doi: 10.7151/dmgt.1454. | Zbl 1194.05025

[006] [7] J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116, doi: 10.1016/S0167-5060(08)70614-9. | Zbl 0773.05066

[007] [8] S. Jendrol' and I. Schiermeyer, On max-min problem concerning weights of edges, Combinatorica 21 (2001) 351-359, doi: 10.1007/s004930100001. | Zbl 1012.05091

[008] [9] S. Jendrol' and M. Tuhársky, A Kotzig type theorem for non-orientable surfaces, Math. Slovaca 56 (2006) 245-253. | Zbl 1141.05028

[009] [10] S. Jendrol', M. Tuhársky and H.-J. Voss, A Kotzig type theorem for large maps on surfaces, Tatra Mt. Math. Publ. 27 (2003) 153-162. | Zbl 1062.05044

[010] [11] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in plane and projective plane - a survey, Preprint Inst. of Algebra MATH-AL-02-2001, TU Dresden.

[011] [12] S. Jendrol' and H.-J. Voss, Light subgraph.

[012] [13] E. Jucovič, Convex polytopes, Veda Bratislava, 1981 (in Slovak).

[013] [14] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Slovaca 5 (1955) 111-113.

[014] [15] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965) 107-117, doi: 10.1007/BF02996313. | Zbl 0132.20701

[015] [16] D.P. Sanders, On light edges and triangles in projective planar graphs, J. Graph Theory 21 (1996) 335-342. | Zbl 0854.05037