A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set {1,2,...,k} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. We have determined an exact value of the total vertex irregularity strength of disjoint union of Helm graphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1619, author = {Ali Ahmad and E.T. Baskoro and M. Imran}, title = {Total vertex irregularity strength of disjoint union of Helm graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {427-434}, zbl = {1257.05144}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1619} }
Ali Ahmad; E.T. Baskoro; M. Imran. Total vertex irregularity strength of disjoint union of Helm graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 427-434. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1619/
[000] [1] A. Ahmad and M. Bača, On vertex irregular total labelings, Ars Combin. (to appear). | Zbl 1313.05314
[001] [2] A. Ahmad, K.M. Awan, I. Javaid, and Slamin, Total vertex irregularity strength of wheel related graphs, Australas. J. Combin. 51 (2011) 147-156. | Zbl 1233.05170
[002] [3] M. Anholcer, M. Kalkowski and J. Przybyło, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math. 309 (2009) 6316-6317, doi: 10.1016/j.disc.2009.05.023. | Zbl 1210.05117
[003] [4] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388, doi: 10.1016/j.disc.2005.11.075. | Zbl 1115.05079
[004] [5] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004) 241-254, doi: 10.1002/jgt.10158. | Zbl 1034.05015
[005] [6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
[006] [7] R.J. Faudree, M.S. Jacobson, J. Lehel and R.H. Schlep, Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discrete Math. 76 (1988) 223-240, doi: 10.1016/0012-365X(89)90321-X. | Zbl 0685.05029
[007] [8] A. Frieze, R.J. Gould, M. Karoński, and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120-137, doi: 10.1002/jgt.10056. | Zbl 1016.05045
[008] [9] A. Gyárfás, The irregularity strength of is 4 for odd m, Discrete Math. 71 (1988) 273-274, doi: 10.1016/0012-365X(88)90106-9. | Zbl 0681.05066
[009] [10] S. Jendrol', M. Tkáč and Zs. Tuza, The irregularity strength and cost of the union of cliques, Discrete Math. 150 (1996) 179-186, doi: 10.1016/0012-365X(95)00186-Z. | Zbl 0852.05054
[010] [11] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 139-1321, doi: 10.1137/090774112. | Zbl 1237.05183
[011] [12] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313-323, doi: 10.1137/S0895480196314291. | Zbl 0947.05067
[012] [13] Nurdin, E.T. Baskoro, A.N.M. Salamn and N.N. Goas, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043-3048, doi: 10.1016/j.disc.2010.06.041. | Zbl 1208.05014
[013] [14] J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (2009) 511-516, doi: 10.1137/070707385. | Zbl 1216.05135
[014] [15] K. Wijaya and Slamin, Total vertex irregular labeling of wheels, fans, suns and friendship graphs, J. Combin. Math. Combin. Comput. 65 (2008) 103-112. | Zbl 1192.05139
[015] [16] K. Wijaya, Slamin, Surahmat and S. Jendrol, Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comput. 55 (2005) 129-136. | Zbl 1100.05090