Total domination versus paired domination
Oliver Schaudt
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 435-447 / Harvested from The Polish Digital Mathematics Library

A dominating set of a graph G is a vertex subset that any vertex of G either belongs to or is adjacent to. A total dominating set is a dominating set whose induced subgraph does not contain isolated vertices. The minimal size of a total dominating set, the total domination number, is denoted by γₜ. The maximal size of an inclusionwise minimal total dominating set, the upper total domination number, is denoted by Γₜ. A paired dominating set is a dominating set whose induced subgraph has a perfect matching. The minimal size of a paired dominating set, the paired domination number, is denoted by γₚ. The maximal size of an inclusionwise minimal paired dominating set, the upper paired domination number, is denoted by Γₚ. In this paper we prove several results on the ratio of these four parameters: For each r ≥ 2 we prove the sharp bound γₚ/γₜ ≤ 2 - 2/r for K1,r-free graphs. As a consequence, we obtain the sharp bound γₚ/γₜ ≤ 2 - 2/(Δ+1), where Δ is the maximum degree. We also show for each r ≥ 2 that C,Tr-free graphs fulfill the sharp bound γₚ/γₜ ≤ 2 - 2/r, where Tr is obtained from K1,r by subdividing each edge exactly once. We show that all of these bounds also hold for the ratio Γₚ/Γₜ. Further, we prove that a graph hereditarily has an induced paired dominating set if and only if γₚ ≤ Γₜ holds for any induced subgraph. We also give a finite forbidden subgraph characterization for this condition. We exactly determine the maximal value of the ratio γₚ/Γₜ taken over the induced subgraphs of a graph. As a consequence, we prove for each r ≥ 3 the sharp bound γₚ/Γₜ ≤ 2 - 2/r for graphs that do not contain the corona of K1,r as subgraph. In particular, we obtain the sharp bound γₚ/Γₜ ≤ 2 - 2/Δ.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270836
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1614,
     author = {Oliver Schaudt},
     title = {Total domination versus paired domination},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {435-447},
     zbl = {1257.05121},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1614}
}
Oliver Schaudt. Total domination versus paired domination. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 435-447. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1614/

[000] [1] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, (Marcel Dekker, New York, 1998). | Zbl 0890.05002

[001] [2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304. | Zbl 0447.05039

[002] [3] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math. 309 (2009) 32-63, doi: 10.1016/j.disc.2007.12.044. | Zbl 1219.05121

[003] [4] T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199-206, doi: 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F | Zbl 0997.05074

[004] [5] J.A. Telle, Complexity of domination-type problems in graphs, Nordic J. Comput. 1 (1994) 157-171.

[005] [6] T.W. Haynes, L.M. Lawson and D.S. Studer, Induced-paired domination in graphs, Ars Combin. 57 (2000) 111-128. | Zbl 1064.05115

[006] [7] B. Zelinka, Induced-paired domatic numbers of graphs, Math. Bohem. 127 (2002) 591-596. | Zbl 1003.05078

[007] [8] O. Favaron and M.A. Henning, Total domination in claw-free graphs with minimum degree 2, Discrete Math. 308 (2008) 3213-3219, doi: 10.1016/j.disc.2007.06.024. | Zbl 1158.05044

[008] [9] O. Favaron and M.A. Henning, Bounds on total domination in claw-free cubic graphs, Discrete Math. 308 (2008) 3491-3507, doi: 10.1016/j.disc.2007.07.007. | Zbl 1190.05089

[009] [10] O. Favaron and M.A. Henning, Upper total domination in claw-free graphs, J. Graph Theory 44 (2003) 148-158, doi: 10.1002/jgt.10134. | Zbl 1028.05078

[010] [11] M.A. Henning and J. Southey, On a conjecture on total domination in claw-free cubic graphs, Discrete Math. 310 (2010) 2984-2999, doi: 10.1016/j.disc.2010.07.006. | Zbl 1222.05203

[011] [12] P. Dorbec, S. Gravier and M.A. Henning, Paired-domination in generalized claw-free graphs, J. Comb. Optim. 14 (2007) 1-7, doi: 10.1007/s10878-006-9022-8. | Zbl 1125.05072

[012] [13] P. Dorbec and S. Gravier, Paired-domination in subdivided star-free graphs, Graphs Combin. 26 (2010) 43-49, doi: 10.1007/s00373-010-0893-1. | Zbl 1231.05199

[013] [14] M. Blidia, M. Chellali and O. Favaron, Ratios of Some Domination Parameters in Graphs and Claw-free Graphs, In: A. Bondy, J. Fonlupt, J.-L. Fouquet, J.-C. Fournier and J.L. Ramírez Alfonsín (Eds.), Trends in Mathematics: Graph Theory in Paris, Birkhäuser, Basel, (2007) 61–72, doi: 10.1007/978-3-7643-7400-6₆.

[014] [15] R.C. Brigham and R.D. Dutton, Domination in claw-free graphs, Congr. Numer. 132 (1998) 69-75. | Zbl 0951.05078

[015] [16] P. Dorbec, M.A. Henning and J. McCoy, Upper total domination versus upper paired-domination, Quaest. Math. 30 (2007) 1-12, doi: 10.2989/160736007780205693. | Zbl 1134.05071

[016] [17] O. Schaudt, On the existence of total dominating subgraphs with a prescribed additive hereditary property, Discrete Math. 311 (2011) 2095-2101, doi: 10.1016/j.disc.2011.05.036. | Zbl 1230.05227

[017] [18] C. Berge, Two theorems in graph theory, Proceedings of the National Academy of Sciences of the United States of America 43 (1957) 842-844, doi: 10.1073/pnas.43.9.842. | Zbl 0086.16202

[018] [19] M.D. Plummer and A. Saito, Forbidden subgraphs and bounds on the size of a maximum matching, J. Graph Theory 50 (2005) 1-12, doi: 10.1002/jgt.20087. | Zbl 1070.05070