3-transitive digraphs
César Hernández-Cruz
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 205-219 / Harvested from The Polish Digital Mathematics Library

Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is 3-transitive if the existence of the directed path (u,v,w,x) of length 3 in D implies the existence of the arc (u,x) ∈ A(D). In this article strong 3-transitive digraphs are characterized and the structure of non-strong 3-transitive digraphs is described. The results are used, e.g., to characterize 3-transitive digraphs that are transitive and to characterize 3-transitive digraphs with a kernel.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270928
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1613,
     author = {C\'esar Hern\'andez-Cruz},
     title = {3-transitive digraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {205-219},
     zbl = {1255.05087},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1613}
}
César Hernández-Cruz. 3-transitive digraphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 205-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1613/

[000] [1] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications (Springer-Verlag Berlin Heidelberg New York, 2002). | Zbl 1001.05002

[001] [2] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141-161, doi: 10.1002/jgt.3190200205. | Zbl 0832.05048

[002] [3] J. Bang-Jensen, J. Huang and E. Prisner, In-tournament digraphs, J. Combin. Theory (B) 59 (1993) 267-287, doi: 10.1006/jctb.1993.1069. | Zbl 0794.05033

[003] [4] C. Berge, Graphs (North-Holland, Amsterdam New York, 1985).

[004] [5] E. Boros and V. Gurvich, Perfect graphs, kernels and cores of cooperative games, Discrete Math. 306 (2006) 2336-2354, doi: 10.1016/j.disc.2005.12.031. | Zbl 1103.05034

[005] [6] V. Chvátal, On the computational complexity of finding a kernel, Report No. CRM-300, 1973, Centre de recherches mathématiques, Université de Montréal.

[006] [7] R. Diestel, Graph Theory 3rd Edition (Springer-Verlag Berlin Heidelberg New York, 2005).

[007] [8] H. Galeana-Sánchez and I.A. Goldfeder, A classification of arc-locally semicomplete digraphs, Publicaciones Preliminares del Instituto de Matemáticas, UNAM 859 (2010). | Zbl 1272.05063

[008] [9] H. Galeana-Sánchez, I.A. Goldfeder and I. Urrutia, On the structure of 3-quasi-transitive digraphs, Discrete Math. 310 (2010) 2495-2498, doi: 10.1016/j.disc.2010.06.008. | Zbl 1213.05112

[009] [10] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in k-transitive and k-quasi-transitive digraphs, Submitted (2010).

[010] [11] A. Ghouila-Houri, Caractérization des graphes non orientés dont on peut orienter les arrêtes de manière à obtenir le graphe d'une relation d'rdre, Comptes Rendus de l'Académie des Sciences Paris 254 (1962) 1370-1371. | Zbl 0105.35503

[011] [12] J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1953). | Zbl 0053.09303

[012] [13] S. Wang and R. Wang, The structure of arc-locally in-semicomplete digraphs, Discrete Math. 309 (2009) 6555-6562, doi: 10.1016/j.disc.2009.06.033. | Zbl 1183.05032

[013] [14] S. Wang and R. Wang, Independent sets and non-augmentable paths in arc-locally in-semicomplete digraphs and quasi-arc-transitive digraphs, Discrete Math. 311 (2010) 282-288, doi: 10.1016/j.disc.2010.11.009. | Zbl 1222.05090