Intersection graph of gamma sets in the total graph
T. Tamizh Chelvam ; T. Asir
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 341-356 / Harvested from The Polish Digital Mathematics Library

In this paper, we consider the intersection graph IΓ() of gamma sets in the total graph on ℤₙ. We characterize the values of n for which IΓ() is complete, bipartite, cycle, chordal and planar. Further, we prove that IΓ() is an Eulerian, Hamiltonian and as well as a pancyclic graph. Also we obtain the value of the independent number, the clique number, the chromatic number, the connectivity and some domination parameters of IΓ().

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270932
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1611,
     author = {T. Tamizh Chelvam and T. Asir},
     title = {Intersection graph of gamma sets in the total graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {341-356},
     zbl = {1255.05110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1611}
}
T. Tamizh Chelvam; T. Asir. Intersection graph of gamma sets in the total graph. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 341-356. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1611/

[000] [1] S. Akbari, D. Kiani, F. Mohammadi and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (2009) 2224-2228, doi: 10.1016/j.jpaa.2009.03.013. | Zbl 1174.13009

[001] [2] D.F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706-2719, doi: 10.1016/j.jalgebra.2008.06.028. | Zbl 1158.13001

[002] [3] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447, doi: 10.1006/jabr.1998.7840. | Zbl 0941.05062

[003] [4] N. Ashrafia, H.R. Maimanibc, M.R. Pournakicd and S. Yassemie, Unit graphs associated with rings, Comm. Algebra 38 (2010) 2851?-2871, doi: 10.1080/00927870903095574.

[004] [5] R. Balakrishnan and K. Ranganathan, A text book of Graph Theory, (Springer, 2000). | Zbl 0938.05001

[005] [6] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Electronic Notes in Discrete Math. 23 (2005) 23-32, doi: 10.1016/j.endm.2005.06.104. | Zbl 1193.05086

[006] [7] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009) 5381-5392, doi: 10.1016/j.disc.2008.11.034. | Zbl 1193.05087

[007] [8] G. Chartrand and L. Lesniak, Graphs and Digraphs, (Chapman & Hall/CRC., 2000). | Zbl 0890.05001

[008] [9] G. Chartrand and P. Zhang, Chromatic Graph Theory, (CRC Press, 2009). | Zbl 1169.05001

[009] [10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamental of Domination in Graphs, (Marcel Dekker Inc., 1998). | Zbl 0890.05002

[010] [11] H.R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801-1808, doi: 10.1016/j.jalgebra.2007.02.003. | Zbl 1141.13008

[011] [12] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, (SIAM Monographs on Discrete Math. Applications., 1999), doi: 10.1137/1.9780898719802. | Zbl 0945.05003

[012] [13] T. Tamizh Chelvam and T. Asir, A note on total graph of ℤₙ, J. Discrete Math. Sci. Cryptography 14 (2011) 1-7. | Zbl 1261.05042

[013] [14] T. Tamizh Chelvam and T. Asir, Domination in the total graph on ℤₙ, J. Combin. Math. Combin. Comput., submitted. | Zbl 1297.05114

[014] [15] A.T. White, Graphs, Groups and Surfaces, (North-Holland, Amsterdam., 1973). | Zbl 0268.05102