Let G = (V,E) be a connected graph and let k be a positive integer with k ≤ rad(G). A subset D ⊆ V is called a distance k-dominating set of G if for every v ∈ V - D, there exists a vertex u ∈ D such that d(u,v) ≤ k. In this paper we study the fractional version of distance k-domination and related parameters.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1609, author = {S. Arumugam and Varughese Mathew and K. Karuppasamy}, title = {Fractional distance domination in graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {449-459}, zbl = {1257.05110}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1609} }
S. Arumugam; Varughese Mathew; K. Karuppasamy. Fractional distance domination in graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 449-459. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1609/
[000] [1] S. Arumugam, K. Karuppasamy and I. Sahul Hamid, Fractional global domination in graphs, Discuss. Math. Graph Theory 30 (2010) 33-44, doi: 10.7151/dmgt.1474. | Zbl 1214.05100
[001] [2] E.J. Cockayne, G. Fricke, S.T. Hedetniemi and C.M. Mynhardt, Properties of minimal dominating functions of graphs, Ars Combin. 41 (1995) 107-115. | Zbl 0840.05090
[002] [3] G. Chartrand and L. Lesniak, Graphs & Digraphs, Fourth Edition, Chapman & Hall/CRC (2005).
[003] [4] G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Generalized packings and coverings of graphs, Congr. Numer. 62 (1988) 259-270. | Zbl 0722.05052
[004] [5] G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Fractional packings, coverings, and irredundance in graphs, Congr. Numer. 66 (1988) 227-238. | Zbl 0722.05052
[005] [6] D.L. Grinstead and P.J. Slater, Fractional domination and fractional packings in graphs, Congr. Numer. 71 (1990) 153-172. | Zbl 0691.05043
[006] [7] E.O. Hare, k-weight domination and fractional domination of Pₘ × Pₙ, Congr. Numer. 78 (1990) 71-80.
[007] [8] J.H. Hattingh, M.A. Henning and J.L. Walters, On the computational complexity of upper distance fractional domination, Australas. J. Combin. 7 (1993) 133-144. | Zbl 0777.05072
[008] [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002
[009] [10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs: Advanced Topics (Marcel Dekker, New York, 1998). | Zbl 0883.00011
[010] [11] S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987). | Zbl 0643.68093
[011] [12] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233. | Zbl 0315.05102
[012] [13] R.R. Rubalcaba, A. Schneider and P.J. Slater, A survey on graphs which have equal domination and closed neighborhood packing numbers, AKCE J. Graphs. Combin. 3 (2006) 93-114. | Zbl 1121.05088
[013] [14] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs (John Wiley & Sons, New York, 1997). | Zbl 0891.05003
[014] [15] D. Vukičević and A. Klobučar, k-dominating sets on linear benzenoids and on the infinite hexagonal grid, Croatica Chemica Acta 80 (2007) 187-191.