A characterization of complete tripartite degree-magic graphs
Ľudmila Bezegová ; Jaroslav Ivančo
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 243-253 / Harvested from The Polish Digital Mathematics Library

A graph is called degree-magic if it admits a labelling of the edges by integers 1, 2,..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to (1+ |E(G)|)/2*deg(v). Degree-magic graphs extend supermagic regular graphs. In this paper we characterize complete tripartite degree-magic graphs.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270784
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1608,
     author = {\v Ludmila Bezegov\'a and Jaroslav Ivan\v co},
     title = {A characterization of complete tripartite degree-magic graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {243-253},
     zbl = {1255.05166},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1608}
}
Ľudmila Bezegová; Jaroslav Ivančo. A characterization of complete tripartite degree-magic graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 243-253. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1608/

[000] [1] Ľ. Bezegová and J. Ivančo, An extension of regular supermagic graphs, Discrete Math. 310 (2010) 3571-3578, doi: 10.1016/j.disc.2010.09.005. | Zbl 1200.05199

[001] [2] Ľ. Bezegová and J. Ivančo, On conservative and supermagic graphs, Discrete Math. 311 (2011) 2428-2436, doi: 10.1016/j.disc.2011.07.014. | Zbl 1238.05226

[002] [3] T. Bier and A. Kleinschmidt, Centrally symmetric and magic rectangles, Discrete Math. 176 (1997) 29-42, doi: 10.1016/S0012-365X(96)00284-1. | Zbl 0898.05007

[003] [4] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010) #DS6. | Zbl 0953.05067

[004] [5] T.R. Hagedorn, Magic rectangles revisited, Discrete Math. 207 (1999) 65-72, doi: 10.1016/S0012-365X(99)00041-2. | Zbl 0942.05009

[005] [6] J. Ivančo, On supermagic regular graphs, Math. Bohemica 125 (2000) 99-114. | Zbl 0963.05121

[006] [7] J. Sedláček, Problem 27. Theory of graphs and its applications, Proc. Symp. Smolenice, Praha (1963) 163-164.

[007] [8] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031-1059, doi: 10.4153/CJM-1966-104-7. | Zbl 0149.21401

[008] [9] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427-438, doi: 10.4153/CJM-1967-035-9. | Zbl 0162.27801