Edge cycle extendable graphs
Terry A. McKee
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 373-378 / Harvested from The Polish Digital Mathematics Library

A graph is edge cycle extendable if every cycle C that is formed from edges and one chord of a larger cycle C⁺ is also formed from edges and one chord of a cycle C' of length one greater than C with V(C') ⊆ V(C⁺). Edge cycle extendable graphs are characterized by every block being either chordal (every nontriangular cycle has a chord) or chordless (no nontriangular cycle has a chord); equivalently, every chord of a cycle of length five or more has a noncrossing chord.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270896
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1606,
     author = {Terry A. McKee},
     title = {Edge cycle extendable graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {373-378},
     zbl = {1255.05162},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1606}
}
Terry A. McKee. Edge cycle extendable graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 373-378. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1606/

[000] [1] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999).

[001] [2] G.A. Dirac, Minimally 2-connected graphs, J. Reine Angew. Math. 228 (1967) 204-216, doi: 10.1515/crll.1967.228.204. | Zbl 0153.25804

[002] [3] R.J. Faudree, R.J. Gould, M.S. Jacobson and L.M. Lesniak, Degree conditions and cycle extendability, Discrete Math. 141 (1995) 109-122, doi: 10.1016/0012-365X(93)E0193-8. | Zbl 0839.05058

[003] [4] B.Lévêque, F. Maffray and N. Trotignon, On graphs with no induced subdivision of K₄, submitted. | Zbl 1244.05148

[004] [5] T.A. McKee, Strongly pancyclic and dual-pancyclic graphs, Discuss. Math. Graph Theory 29 (2009) 5-14, doi: 10.7151/dmgt.1429. | Zbl 1182.05072

[005] [6] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999). | Zbl 0945.05003

[006] [7] M.D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968) 85-94, doi: 10.1090/S0002-9947-1968-0228369-8.