We prove that if G is a graph of order 5k and the minimum degree of G is at least 3k then G contains k disjoint cycles of length 5.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1605, author = {Hong Wang}, title = {Disjoint 5-cycles in a graph}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {221-242}, zbl = {1255.05109}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1605} }
Hong Wang. Disjoint 5-cycles in a graph. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 221-242. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1605/
[000] [1] S. Abbasi, PhD Thesis (Rutgers University 1998).
[001] [2] B. Bollobás, Extremal Graph Theory ( Academic Press, London, 1978).
[002] [3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439, doi: 10.1007/BF01895727. | Zbl 0118.19001
[003] [4] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230, doi: 10.1016/0012-365X(84)90050-5.
[004] [5] P. Erdös, Some recent combinatorial problems, Technical Report, University of Bielefeld, Nov. 1990.
[005] [6] B. Randerath, I. Schiermeyer and H. Wang, On quadrilaterals in a graph, Discrete Math. 203 (1999) 229-237, doi: 10.1016/S0012-365X(99)00053-9. | Zbl 0932.05046
[006] [7] H. Wang, On quadrilaterals in a graph, Discrete Math. 288 (2004) 149-166, doi: 10.1016/j.disc.2004.02.020.
[007] [8] H. Wang, Proof of the Erdös-Faudree conjecture on quadrilaterals, Graphs and Combin. 26 (2010) 833-877, doi: 10.1007/s00373-010-0948-3. | Zbl 1223.05145