Disjoint 5-cycles in a graph
Hong Wang
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 221-242 / Harvested from The Polish Digital Mathematics Library

We prove that if G is a graph of order 5k and the minimum degree of G is at least 3k then G contains k disjoint cycles of length 5.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:271045
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1605,
     author = {Hong Wang},
     title = {Disjoint 5-cycles in a graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {221-242},
     zbl = {1255.05109},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1605}
}
Hong Wang. Disjoint 5-cycles in a graph. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 221-242. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1605/

[000] [1] S. Abbasi, PhD Thesis (Rutgers University 1998).

[001] [2] B. Bollobás, Extremal Graph Theory ( Academic Press, London, 1978).

[002] [3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439, doi: 10.1007/BF01895727. | Zbl 0118.19001

[003] [4] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230, doi: 10.1016/0012-365X(84)90050-5.

[004] [5] P. Erdös, Some recent combinatorial problems, Technical Report, University of Bielefeld, Nov. 1990.

[005] [6] B. Randerath, I. Schiermeyer and H. Wang, On quadrilaterals in a graph, Discrete Math. 203 (1999) 229-237, doi: 10.1016/S0012-365X(99)00053-9. | Zbl 0932.05046

[006] [7] H. Wang, On quadrilaterals in a graph, Discrete Math. 288 (2004) 149-166, doi: 10.1016/j.disc.2004.02.020.

[007] [8] H. Wang, Proof of the Erdös-Faudree conjecture on quadrilaterals, Graphs and Combin. 26 (2010) 833-877, doi: 10.1007/s00373-010-0948-3. | Zbl 1223.05145