Let F be a graph and let , denote nonempty families of graphs. We write F → (,) if in any 2-coloring of edges of F with red and blue, there is a red subgraph isomorphic to some graph from G or a blue subgraph isomorphic to some graph from H. The graph F without isolated vertices is said to be a (,)-minimal graph if F → (,) and F - e not → (,) for every e ∈ E(F). We present a technique which allows to generate infinite family of (,)-minimal graphs if we know some special graphs. In particular, we show how to receive infinite family of -minimal graphs, for every n ≥ 3.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1604, author = {Mariusz Ha\l uszczak}, title = {On Ramsey $(K\_{1,2}, Kn)$-minimal graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {331-339}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1604} }
Mariusz Hałuszczak. On Ramsey $(K_{1,2}, Kₙ)$-minimal graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 331-339. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1604/
[000] [1] E.T. Baskoro, L. Yulianti and H. Assiyatun, Ramsey (K_{1, 2}, C₄)-minimal graphs, J. Combin. Math. Combin. Comp. 65 (2008) 79-90. | Zbl 1170.05044
[001] [2] E.T. Baskoro, T. Vetrík and L. Yulianti, Ramsey (K_{1, 2}, C₄)-minimal graphs, Discuss. Math. Graph Theory, 30 (2010) 637-649, doi: 10.7151/dmgt.1519. | Zbl 1217.05163
[002] [3] M. Borowiecki, M. Hałuszczak and E. Sidorowicz, On Ramsey minimal graphs, Discrete Math. 286 (2004) 37-43, doi: 10.1016/j.disc.2003.11.043. | Zbl 1061.05062
[003] [4] M. Borowiecki, I. Schiermeyer and E. Sidorowicz, Ramsey (K_{1, 2}, K₃)-minimal graphs, Electron. J. Combin. 12 (2005) #R20. | Zbl 1081.05071
[004] [5] S.A. Burr, P. Erdös, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Ramsey-minimal graphs for the pair star, connected graph, Studia Sci. Math. Hungar. 15 (1980) 265-273. | Zbl 0438.05046
[005] [6] S.A. Burr, P. Erdös, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Ramsey-minimal graphs for star-forests, Discrete Math. 33 (1981) 227-237, doi: 10.1016/0012-365X(81)90266-1. | Zbl 0456.05046
[006] [7] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977) 93-93.
[007] [8] R. Diestel, Graph Theory, (2nd ed., Springer - Verlag, New York, 2000).
[008] [9] T. Łuczak, On Ramsey minimal graphs, Electron. J. Combin. 1 (1994) #R4. | Zbl 0814.05058
[009] [10] I. Mengersen, J. Oeckermann, Matching-star Ramsey sets, Discrete Applied Math. 95 (1999) 417-424, doi: 10.1016/S0166-218X(99)00089-X. | Zbl 0932.05063