Let G = (V,E) be a graph. A subset S of V is a 2-dominating set if every vertex of V-S is dominated at least 2 times, and S is a 2-independent set of G if every vertex of S has at most one neighbor in S. The minimum cardinality of a 2-dominating set a of G is the 2-domination number γ₂(G) and the maximum cardinality of a 2-independent set of G is the 2-independence number β₂(G). Fink and Jacobson proved that γ₂(G) ≤ β₂(G) for every graph G. In this paper we provide a constructive characterization of trees with equal 2-domination and 2-independence numbers.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1603, author = {Mustapha Chellali and Nac\'era Meddah}, title = {Trees with equal 2-domination and 2-independence numbers}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {263-270}, zbl = {1255.05131}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1603} }
Mustapha Chellali; Nacéra Meddah. Trees with equal 2-domination and 2-independence numbers. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 263-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1603/
[000] [1] M. Borowiecki, On a minimaximal kernel of trees, Discuss. Math. 1 (1975) 3-6. | Zbl 0418.05016
[001] [2] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k-independence in graphs: A Survey, Graphs and Combinatorics, 28 (2012) 1-55, doi: 10.1007/s00373-011-1040-3.
[002] [3] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combinat. Theory (B) 39 (1985) 101-102, doi: 10.1016/0095-8956(85)90040-1. | Zbl 0583.05049
[003] [4] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science., ed(s), Y. Alavi and A.J. Schwenk (Wiley, New York, 1985) 283-300.
[004] [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs ( Marcel Dekker, New York, 1998). | Zbl 0890.05002
[005] [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York 1998). | Zbl 0883.00011