Trees with equal 2-domination and 2-independence numbers
Mustapha Chellali ; Nacéra Meddah
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 263-270 / Harvested from The Polish Digital Mathematics Library

Let G = (V,E) be a graph. A subset S of V is a 2-dominating set if every vertex of V-S is dominated at least 2 times, and S is a 2-independent set of G if every vertex of S has at most one neighbor in S. The minimum cardinality of a 2-dominating set a of G is the 2-domination number γ₂(G) and the maximum cardinality of a 2-independent set of G is the 2-independence number β₂(G). Fink and Jacobson proved that γ₂(G) ≤ β₂(G) for every graph G. In this paper we provide a constructive characterization of trees with equal 2-domination and 2-independence numbers.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:271035
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1603,
     author = {Mustapha Chellali and Nac\'era Meddah},
     title = {Trees with equal 2-domination and 2-independence numbers},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {263-270},
     zbl = {1255.05131},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1603}
}
Mustapha Chellali; Nacéra Meddah. Trees with equal 2-domination and 2-independence numbers. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 263-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1603/

[000] [1] M. Borowiecki, On a minimaximal kernel of trees, Discuss. Math. 1 (1975) 3-6. | Zbl 0418.05016

[001] [2] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k-independence in graphs: A Survey, Graphs and Combinatorics, 28 (2012) 1-55, doi: 10.1007/s00373-011-1040-3.

[002] [3] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combinat. Theory (B) 39 (1985) 101-102, doi: 10.1016/0095-8956(85)90040-1. | Zbl 0583.05049

[003] [4] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science., ed(s), Y. Alavi and A.J. Schwenk (Wiley, New York, 1985) 283-300.

[004] [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs ( Marcel Dekker, New York, 1998). | Zbl 0890.05002

[005] [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York 1998). | Zbl 0883.00011