On kaleidoscopic pseudo-randomness of finite Euclidean graphs
Le Anh Vinh
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 279-287 / Harvested from The Polish Digital Mathematics Library

D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero (2008) showed that the distance graphs has kaleidoscopic pseudo-random property, i.e. sufficiently large subsets of d-dimensional vector spaces over finite fields contain every possible finite configurations. In this paper we study the kaleidoscopic pseudo-randomness of finite Euclidean graphs using probabilistic methods.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270881
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1597,
     author = {Le Anh Vinh},
     title = {On kaleidoscopic pseudo-randomness of finite Euclidean graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {279-287},
     zbl = {1255.05086},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1597}
}
Le Anh Vinh. On kaleidoscopic pseudo-randomness of finite Euclidean graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 279-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1597/

[000] [1] N. Alon and J.H. Spencer, The Probabilistic Method (Willey-Interscience, 2000). | Zbl 0996.05001

[001] [2] E. Bannai, O. Shimabukuro and H. Tanaka, Finite Euclidean graphs and Ramanujan graphs, Discrete Math. 309 (2009) 6126-6134, doi: 10.1016/j.disc.2009.06.008. | Zbl 1208.05046

[002] [3] D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero, Distance graphs in vector spaces over finite fields, coloring and pseudo-randomness preprint, arXiv:0804.3036v1.

[003] [4] A. Iosevich and M. Rudnev, Erdös distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007) 6127-6142, doi: 10.1090/S0002-9947-07-04265-1. | Zbl 1145.11083

[004] [5] M. Krivelevich and B. Sudakov, Pseudo-random graphs, in: Conference on Finite and Infinite Sets Budapest, Bolyai Society Mathematical Studies X, (Springer, Berlin 2006) 1-64.

[005] [6] S. Li and L.A. Vinh, On the spectrum of unitary finite-Euclidean graphs, Ars Combinatoria, to appear.

[006] [7] A. Medrano, P. Myers, H.M. Stark and A. Terras, Finite analogues of Euclidean space, Journal of Computational and Applied Mathematics 68 ( 1996) 221-238, doi: 10.1016/0377-0427(95)00261-8. | Zbl 0874.05030

[007] [8] L.A. Vinh and D.P. Dung, Explicit tough Ramsey graphs, in: Proceedings of the International Conference on Relations, Orders and Graphs: Interaction with Computer Science, ( Nouha Editions, 2008) 139-146.

[008] [9] L.A. Vinh, Explicit Ramsey graphs and Erdös distance problem over finite Euclidean and non-Euclidean spaces, Electronic J. Combin. 15 (2008) R5. | Zbl 1206.05054

[009] [10] L.A. Vinh, Szemeredi-Trotter type theorem and sum-product estimate in finite fields, European J. Combin., to appear. | Zbl 1253.11015

[010] [11] V. Vu, Sum-product estimates via directed expanders, Mathematical Research Letters, 15 (2008) 375-388. | Zbl 1214.11021