We consider the one-colour triangle avoidance game. Using a high performance computing network, we showed that the first player can win the game on 16 vertices.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1596, author = {Przemys\l aw Gordinowicz and Pawe\l\ Pra\l at}, title = {The first player wins the one-colour triangle avoidance game on 16 vertices}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {181-185}, zbl = {1255.05121}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1596} }
Przemysław Gordinowicz; Paweł Prałat. The first player wins the one-colour triangle avoidance game on 16 vertices. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 181-185. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1596/
[000] [1] S.C. Cater, F. Harary and R.W. Robinson, One-color triangle avoidance games, Congr. Numer. 153 (2001) 211-221. | Zbl 0990.91008
[001] [2] F. Harary, Achievement and avoidance games for graphs, Ann. Discrete Math. 13 (1982) 111-119. | Zbl 0565.05043
[002] [3] B.D. McKay, nauty Users Guide (Version 2.4), http://cs.anu.edu.au/~bdm/nauty/.
[003] [4] B.D. McKay, personal communication.
[004] [5] P. Prałat, A note on the one-colour avoidance game on graphs, J. Combin. Math. and Combin. Comp. 75 (2010) 85-94. | Zbl 1217.91023
[005] [6] Á. Seress, On Hajnal's triangle-free game, Graphs and Combin. 8 (1992) 75-79, doi: 10.1007/BF01271710.
[006] [7] D. Singmaster, Almost all partizan games are first person and almost all impartial games are maximal, J. Combin. Inform. System Sci. 7 (1982) 270-274. | Zbl 0528.90109
[007] [8] A UNIX script and programs written in C/C++ used to solve the problem, http://www.math.wvu.edu/~pralat/index.php?page=publications.