For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set 1,2, ...,k such that for any vertex v ∈ V(G) with f(v) = ∅ the condition ⋃u ∈ N(v)f(u) = 1,2, ...,k is fulfilled, where N(v) is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set of k-rainbow dominating functions on G with the property that for each v ∈ V(G), is called a k-rainbow dominating family (of functions) on G. The maximum number of functions in a k-rainbow dominating family on G is the k-rainbow domatic number of G, denoted by . Note that is the classical domatic number d(G). In this paper we initiate the study of the k-rainbow domatic number in graphs and we present some bounds for . Many of the known bounds of d(G) are immediate consequences of our results.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1591, author = {Seyyed Mahmoud Sheikholeslami and Lutz Volkmann}, title = {The k-rainbow domatic number of a graph}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {129-140}, zbl = {1255.05139}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1591} }
Seyyed Mahmoud Sheikholeslami; Lutz Volkmann. The k-rainbow domatic number of a graph. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 129-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1591/
[000] [1] C. Berge, Theory of Graphs and its Applications (Methuen, London, 1962).
[001] [2] B. Brešar, M.A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213-225. | Zbl 1163.05046
[002] [3] B. Brešar and T.K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394-2400, doi: 10.1016/j.dam.2007.07.018. | Zbl 1126.05091
[003] [4] G.J. Chang, J. Wu and X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010) 8-12, doi: 10.1016/j.dam.2009.08.010. | Zbl 1226.05191
[004] [5] T. Chunling, L. Xiaohui, Y. Yuansheng and L. Meiqin, 2-rainbow domination of generalized Petersen graphs P(n,2), Discrete Appl. Math 157 (2009) 1932-1937, doi: 10.1016/j.dam.2009.01.020. | Zbl 1183.05061
[005] [6] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19-32. | Zbl 1081.05083
[006] [7] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261, doi: 10.1002/net.3230070305. | Zbl 0384.05051
[007] [8] B. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004) 389-402, doi: 10.7151/dmgt.1238. | Zbl 1063.05107
[008] [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998). | Zbl 0890.05002
[009] [10] H.B. Walikar, B.D. Acharya and E. Sampathkumar, Recent Developments in the Theory of Domination in Graphs (in: MRI Lecture Notes in Math., Mahta Research Instit., Allahabad, 1979).
[010] [11] D. B. West, Introduction to Graph Theory (Prentice-Hall, Inc, 2000).
[011] [12] G. Xu, 2-rainbow domination of generalized Petersen graphs P(n,3), Discrete Appl. Math. 157 (2009) 2570-2573, doi: 10.1016/j.dam.2009.03.016. | Zbl 1209.05175