p-Wiener intervals and p-Wiener free intervals
Kumarappan Kathiresan ; S. Arockiaraj
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 121-127 / Harvested from The Polish Digital Mathematics Library

A positive integer n is said to be Wiener graphical, if there exists a graph G with Wiener index n. In this paper, we prove that any positive integer n(≠ 2,5) is Wiener graphical. For any positive integer p, an interval [a,b] is said to be a p-Wiener interval if for each positive integer n ∈ [a,b] there exists a graph G on p vertices such that W(G) = n. For any positive integer p, an interval [a,b] is said to be p-Wiener free interval (p-hyper-Wiener free interval) if there exist no graph G on p vertices with a ≤ W(G) ≤ b (a ≤ WW(G) ≤ b). In this paper, we determine some p-Wiener intervals and p-Wiener free intervals for some fixed positive integer p.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270806
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1590,
     author = {Kumarappan Kathiresan and S. Arockiaraj},
     title = {p-Wiener intervals and p-Wiener free intervals},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {121-127},
     zbl = {1255.05061},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1590}
}
Kumarappan Kathiresan; S. Arockiaraj. p-Wiener intervals and p-Wiener free intervals. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 121-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1590/

[000] [1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley Reading, 1990). | Zbl 0688.05017

[001] [2] P.G. Doyle and J.L. Snell, Random Walks and Electric Networks (Math. Assoc., Washington, 1984). | Zbl 0583.60065

[002] [3] R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (101) 1976. | Zbl 0329.05112

[003] [4] D. Goldman, S. Istrail, G. Lancia and A. Picolboni, Algorithmic strategies in Combinatorial Chemistry, in: 11th ACM-SIAM Symposium, Discrete Algorithms (2000) 275-284. | Zbl 0963.92015

[004] [5] I. Gutman, Y.N. Yeh, S.L. Lee and J.C. Chen, Wiener number of dendrimers, Comm. Math. Chem., 30 (1994) 103-115. | Zbl 0798.05052

[005] [6] I. Gutman, Relation between hyper-Wiener and Wiener index, Chem. Phys. Lett. 364 (2002) 352-356, doi: 10.1016/S0009-2614(02)01343-X.

[006] [7] KM. Kathiresan and S. Arockiaraj, Wiener indices of generalized complementary prisms, Bull. Inst. Combin. Appl. 59 (2010) 31-45. | Zbl 1221.05116

[007] [8] S. Klavžar, P. Zigert and I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. Chem. 24 (2000) 229-233, doi: 10.1016/S0097-8485(99)00062-5. | Zbl 1034.92040

[008] [9] Liu Mu-huo and Xuezhong Tan, The first to (k+1)-th smallest Wiener (Hyper -Wiener) indices of connected graphs, Kragujevac J. Math. 32 (2009) 109-115. | Zbl 1199.05091

[009] [10] S. Nikolić, N. Trinajstić and Z. Mihalić, The Wiener index: Development and applications, Croat. Chem. Acta. 68 (1995) 105-129.

[010] [11] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005.