For a connected graph G of order n, a set S of vertices is called a double geodetic set of G if for each pair of vertices x,y in G there exist vertices u,v ∈ S such that x,y ∈ I[u,v]. The double geodetic number dg(G) is the minimum cardinality of a double geodetic set. Any double godetic of cardinality dg(G) is called dg-set of G. The double geodetic numbers of certain standard graphs are obtained. It is shown that for positive integers r,d such that r < d ≤ 2r and 3 ≤ a ≤ b there exists a connected graph G with rad G = r, diam G = d, g(G) = a and dg(G) = b. Also, it is proved that for integers n, d ≥ 2 and l such that 3 ≤ k ≤ l ≤ n and n-d-l+1 ≥ 0, there exists a graph G of order n diameter d, g(G) = k and dg(G) = l.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1589, author = {A.P. Santhakumaran and T. Jebaraj}, title = {Double geodetic number of a graph}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {109-119}, zbl = {1255.05069}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1589} }
A.P. Santhakumaran; T. Jebaraj. Double geodetic number of a graph. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 109-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1589/
[000] [1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990). | Zbl 0688.05017
[001] [2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007. | Zbl 0987.05047
[002] [3] G. Chartrand, F. Harary, H.C. Swart and P. Zhang, Geodomination in graphs, Bulletin ICA 31 (2001) 51-59. | Zbl 0969.05048
[003] [4] F. Harary, Graph Theory (Addision-Wesely, 1969).
[004] [5] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17 (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2. | Zbl 0825.68490
[005] [6] R. Muntean and P. Zhang, On geodomonation in graphs, Congr. Numer. 143 (2000) 161-174. | Zbl 0969.05047
[006] [7] P.A. Ostrand, Graphs with specified radius and diameter, Discrete Math. 4 (1973) 71-75, doi: 10.1016/0012-365X(73)90116-7. | Zbl 0265.05123