Double geodetic number of a graph
A.P. Santhakumaran ; T. Jebaraj
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 109-119 / Harvested from The Polish Digital Mathematics Library

For a connected graph G of order n, a set S of vertices is called a double geodetic set of G if for each pair of vertices x,y in G there exist vertices u,v ∈ S such that x,y ∈ I[u,v]. The double geodetic number dg(G) is the minimum cardinality of a double geodetic set. Any double godetic of cardinality dg(G) is called dg-set of G. The double geodetic numbers of certain standard graphs are obtained. It is shown that for positive integers r,d such that r < d ≤ 2r and 3 ≤ a ≤ b there exists a connected graph G with rad G = r, diam G = d, g(G) = a and dg(G) = b. Also, it is proved that for integers n, d ≥ 2 and l such that 3 ≤ k ≤ l ≤ n and n-d-l+1 ≥ 0, there exists a graph G of order n diameter d, g(G) = k and dg(G) = l.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270828
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1589,
     author = {A.P. Santhakumaran and T. Jebaraj},
     title = {Double geodetic number of a graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {109-119},
     zbl = {1255.05069},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1589}
}
A.P. Santhakumaran; T. Jebaraj. Double geodetic number of a graph. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 109-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1589/

[000] [1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990). | Zbl 0688.05017

[001] [2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007. | Zbl 0987.05047

[002] [3] G. Chartrand, F. Harary, H.C. Swart and P. Zhang, Geodomination in graphs, Bulletin ICA 31 (2001) 51-59. | Zbl 0969.05048

[003] [4] F. Harary, Graph Theory (Addision-Wesely, 1969).

[004] [5] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17 (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2. | Zbl 0825.68490

[005] [6] R. Muntean and P. Zhang, On geodomonation in graphs, Congr. Numer. 143 (2000) 161-174. | Zbl 0969.05047

[006] [7] P.A. Ostrand, Graphs with specified radius and diameter, Discrete Math. 4 (1973) 71-75, doi: 10.1016/0012-365X(73)90116-7. | Zbl 0265.05123