Recognizable colorings of cycles and trees
Michael J. Dorfling ; Samantha Dorfling
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 81-90 / Harvested from The Polish Digital Mathematics Library

For a graph G and a vertex-coloring c:V(G) → 1,2, ...,k, the color code of a vertex v is the (k+1)-tuple (a₀,a₁, ...,aₖ), where a₀ = c(v), and for 1 ≤ i ≤ k, ai is the number of neighbors of v colored i. A recognizable coloring is a coloring such that distinct vertices have distinct color codes. The recognition number of a graph is the minimum k for which G has a recognizable k-coloring. In this paper we prove three conjectures of Chartrand et al. in [8] regarding the recognition number of cycles and trees.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:271084
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1587,
     author = {Michael J. Dorfling and Samantha Dorfling},
     title = {Recognizable colorings of cycles and trees},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {81-90},
     zbl = {1255.05078},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1587}
}
Michael J. Dorfling; Samantha Dorfling. Recognizable colorings of cycles and trees. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 81-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1587/

[000] [1] M. Aigner and E. Triesch, Irregular assignments and two problems á la Ringel, in: Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn, eds. (Physica, Heidelberg, 1990) 29-36.

[001] [2] M. Aigner, E. Triesch and Z. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, Combinatorics' 90 (Elsevier Science Pub., New York, 1992) 1-9.

[002] [3] A.C. Burris, On graphs with irregular coloring number 2, Congr. Numer. 100 (1994) 129-140. | Zbl 0836.05029

[003] [4] A.C. Burris, The irregular coloring number of a tree, Discrete Math. 141 (1995) 279-283, doi: 10.1016/0012-365X(93)E0225-S. | Zbl 0829.05027

[004] [5] G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang, Detectable colorings of graphs, Util. Math. 69 (2006) 13-32. | Zbl 1102.05020

[005] [6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congress. Numer. 64 (1988) 197-210.

[006] [7] G. Chartrand and L. Lesniak, Graphs & Digraphs: Fourth Edition (Chapman & Hall/CRC, Boca Raton, FL, 2005).

[007] [8] G. Chartrand, L. Lesniak, D.W. VanderJagt and P. Zhang, Recognizable colorings of graphs, Discuss. Math. Graph Theory 28 (2008) 35-57, doi: 10.7151/dmgt.1390. | Zbl 1235.05049

[008] [9] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: Graphs and Applications (Wiley, New York, 1985) 147-162. | Zbl 0562.05023