On total vertex irregularity strength of graphs
K. Muthu Guru Packiam ; Kumarappan Kathiresan
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 39-45 / Harvested from The Polish Digital Mathematics Library

Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270795
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1584,
     author = {K. Muthu Guru Packiam and Kumarappan Kathiresan},
     title = {On total vertex irregularity strength of graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {39-45},
     zbl = {1255.05170},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1584}
}
K. Muthu Guru Packiam; Kumarappan Kathiresan. On total vertex irregularity strength of graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 39-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1584/

[000] [1] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15-38, doi: 10.1016/S0012-365X(98)00112-5. | Zbl 0956.05092

[001] [2] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388,10.1016/j.disc.2005.11.075. | Zbl 1115.05079

[002] [3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.

[003] [4] J.H. Dinitz, D.K. Garnick and A. Gyárfás, On the irregularity strength of the m× n grid, J. Graph Theory 16 (1992) 355-374, doi: 10.1002/jgt.3190160409. | Zbl 0771.05055

[004] [5] A. Gyárfás, The irregularity strength of Km,m is 4 for odd m, Discrete Math. 71 (1988) 273-274, doi: 10.1016/0012-365X(88)90106-9. | Zbl 0681.05066

[005] [6] S. Jendrol' and M. Tkáč, The irregularity strength of tKₚ, Discrete Math. 145 (1995) 301-305, doi: 10.1016/0012-365X(94)E0043-H. | Zbl 0834.05029

[006] [7] KM. Kathiresan and K. Muthugurupackiam, Change in irregularity strength by an edge, J. Combin. Math. Combin. Comp. 64 (2008) 49-64. | Zbl 1194.05140

[007] [8] KM. Kathiresan and K. Muthugurupackiam, A study on stable, positive and negative edges with respect to irregularity strength of a graph, Ars Combin. (to appear). | Zbl 1265.05535

[008] [9] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043-3048, doi: 10.1016/j.disc.2010.06.041. | Zbl 1208.05014

[009] [10] K. Wijaya, Slamin, Surahmat and S. Jendrol', Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comp. 55 (2005) 129-136. | Zbl 1100.05090

[010] [11] K. Wijaya and Slamin, Total vertex irregular labelings of wheels, fans, suns and friendship graph, J. Combin. Math. Combin. Comp. 65 (2008) 103-112. | Zbl 1192.05139