Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1584, author = {K. Muthu Guru Packiam and Kumarappan Kathiresan}, title = {On total vertex irregularity strength of graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {39-45}, zbl = {1255.05170}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1584} }
K. Muthu Guru Packiam; Kumarappan Kathiresan. On total vertex irregularity strength of graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 39-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1584/
[000] [1] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15-38, doi: 10.1016/S0012-365X(98)00112-5. | Zbl 0956.05092
[001] [2] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388,10.1016/j.disc.2005.11.075. | Zbl 1115.05079
[002] [3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
[003] [4] J.H. Dinitz, D.K. Garnick and A. Gyárfás, On the irregularity strength of the m× n grid, J. Graph Theory 16 (1992) 355-374, doi: 10.1002/jgt.3190160409. | Zbl 0771.05055
[004] [5] A. Gyárfás, The irregularity strength of is 4 for odd m, Discrete Math. 71 (1988) 273-274, doi: 10.1016/0012-365X(88)90106-9. | Zbl 0681.05066
[005] [6] S. Jendrol' and M. Tkáč, The irregularity strength of tKₚ, Discrete Math. 145 (1995) 301-305, doi: 10.1016/0012-365X(94)E0043-H. | Zbl 0834.05029
[006] [7] KM. Kathiresan and K. Muthugurupackiam, Change in irregularity strength by an edge, J. Combin. Math. Combin. Comp. 64 (2008) 49-64. | Zbl 1194.05140
[007] [8] KM. Kathiresan and K. Muthugurupackiam, A study on stable, positive and negative edges with respect to irregularity strength of a graph, Ars Combin. (to appear). | Zbl 1265.05535
[008] [9] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043-3048, doi: 10.1016/j.disc.2010.06.041. | Zbl 1208.05014
[009] [10] K. Wijaya, Slamin, Surahmat and S. Jendrol', Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comp. 55 (2005) 129-136. | Zbl 1100.05090
[010] [11] K. Wijaya and Slamin, Total vertex irregular labelings of wheels, fans, suns and friendship graph, J. Combin. Math. Combin. Comp. 65 (2008) 103-112. | Zbl 1192.05139