List coloring of complete multipartite graphs
Tomáš Vetrík
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 31-37 / Harvested from The Polish Digital Mathematics Library

The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r-1 partite classes of order two.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270922
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1583,
     author = {Tom\'a\v s Vetr\'\i k},
     title = {List coloring of complete multipartite graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {31-37},
     zbl = {1255.05085},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1583}
}
Tomáš Vetrík. List coloring of complete multipartite graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 31-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1583/

[000] [1] N. Alon, Choice numbers of graphs; a probabilistic approach, Combinatorics, Probability and Computing 1 (1992) 107-114, doi: 10.1017/S0963548300000122. | Zbl 0793.05076

[001] [2] H. Enomoto, K. Ohba, K. Ota and J. Sakamoto, Choice number of some complete multi-partite graphs, Discrete Math. 244 (2002) 55-66, doi: 10.1016/S0012-365X(01)00059-0. | Zbl 0994.05066

[002] [3] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proceedings of the West-Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, California (Congr. Numer. XXVI, 1979) 125-157.

[003] [4] S. Gravier and F. Maffray, Graphs whose choice number is equal to their chromatic number, J. Graph Theory 27 (1998) 87-97, doi: 10.1002/(SICI)1097-0118(199802)27:2<87::AID-JGT4>3.0.CO;2-B | Zbl 0891.05031

[004] [5] H.A. Kierstead, On the choosability of complete multipartite graphs with part size three, Discrete Math. 211 (2000) 255-259, doi: 10.1016/S0012-365X(99)00157-0. | Zbl 0944.05031

[005] [6] Zs. Tuza, Graph colorings with local constraints -- a survey, Discuss. Math. Graph Theory 17 (1997) 161-228, doi: 10.7151/dmgt.1049. | Zbl 0923.05027

[006] [7] V.G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz 29 (1976) 3-10 (in Russian).

[007] [8] D.R. Woodall, List colourings of graphs, in: Surveys in Combinatorics, London Mathematical Society Lecture Note Series 288 (Cambridge University Press, 2001) 269-301. | Zbl 0979.05047

[008] [9] D. Yang, Extension of the game coloring number and some results on the choosability of complete multipartite graphs, PhD Thesis, (Arizona State University 2003).