A set S ⊆ V of vertices in a graph G = (V, E) is called a dominating set if every vertex in V-S is adjacent to a vertex in S. A dominating set which intersects every maximum independent set in G is called an independent transversal dominating set. The minimum cardinality of an independent transversal dominating set is called the independent transversal domination number of G and is denoted by . In this paper we begin an investigation of this parameter.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1581, author = {Ismail Sahul Hamid}, title = {Independent transversal domination in graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {32}, year = {2012}, pages = {5-17}, zbl = {1255.05136}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1581} }
Ismail Sahul Hamid. Independent transversal domination in graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 5-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1581/
[000] [1] G. Chartrand and L. Lesniak, Graphs and Digraphs (Fourth edition, CRC Press, Boca Raton, 2005). | Zbl 1057.05001
[001] [2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304. | Zbl 0447.05039
[002] [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002
[003] [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998). | Zbl 0883.00011
[004] [5] Topics on Domination, Guest Editors: S.T. Hedetniemi and R.C. Laskar, Discrete Math. 86 (1990).
[005] [6] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979) 607-613. | Zbl 0449.05057