Independent transversal domination in graphs
Ismail Sahul Hamid
Discussiones Mathematicae Graph Theory, Tome 32 (2012), p. 5-17 / Harvested from The Polish Digital Mathematics Library

A set S ⊆ V of vertices in a graph G = (V, E) is called a dominating set if every vertex in V-S is adjacent to a vertex in S. A dominating set which intersects every maximum independent set in G is called an independent transversal dominating set. The minimum cardinality of an independent transversal dominating set is called the independent transversal domination number of G and is denoted by γit(G). In this paper we begin an investigation of this parameter.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:271071
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1581,
     author = {Ismail Sahul Hamid},
     title = {Independent transversal domination in graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {32},
     year = {2012},
     pages = {5-17},
     zbl = {1255.05136},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1581}
}
Ismail Sahul Hamid. Independent transversal domination in graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) pp. 5-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1581/

[000] [1] G. Chartrand and L. Lesniak, Graphs and Digraphs (Fourth edition, CRC Press, Boca Raton, 2005). | Zbl 1057.05001

[001] [2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304. | Zbl 0447.05039

[002] [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002

[003] [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998). | Zbl 0883.00011

[004] [5] Topics on Domination, Guest Editors: S.T. Hedetniemi and R.C. Laskar, Discrete Math. 86 (1990).

[005] [6] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979) 607-613. | Zbl 0449.05057