Upper bounds on the b-chromatic number and results for restricted graph classes
Mais Alkhateeb ; Anja Kohl
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 709-735 / Harvested from The Polish Digital Mathematics Library

A b-coloring of a graph G by k colors is a proper vertex coloring such that every color class contains a color-dominating vertex, that is, a vertex having neighbors in all other k-1 color classes. The b-chromatic number χb(G) is the maximum integer k for which G has a b-coloring by k colors. Moreover, the graph G is called b-continuous if G admits a b-coloring by k colors for all k satisfying χ(G)kχb(G). In this paper, we establish four general upper bounds on χb(G). We present results on the b-chromatic number and the b-continuity problem for special graphs, in particular for disconnected graphs and graphs with independence number 2. Moreover we determine χb(G) for graphs G with minimum degree δ(G) ≥ |V(G)|-3, graphs G with clique number ω(G) ≥ |V(G)|-3, and graphs G with independence number α(G) ≥ |V(G)|-2. We also prove that these graphs are b-continuous.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:271042
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1575,
     author = {Mais Alkhateeb and Anja Kohl},
     title = {Upper bounds on the b-chromatic number and results for restricted graph classes},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {709-735},
     zbl = {1255.05072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1575}
}
Mais Alkhateeb; Anja Kohl. Upper bounds on the b-chromatic number and results for restricted graph classes. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 709-735. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1575/

[000] [1] D. Barth, J. Cohen and T. Faik, On the b-continuity property of graphs, Discrete Appl. Math. 155 (2007) 1761-1768, doi: 10.1016/j.dam.2007.04.011. | Zbl 1132.05020

[001] [2] T. Faik and J.-F. Sacle, Some b-continuous classes of graphs, Technical Report N1350, LRI (Universite de Paris Sud, 2003).

[002] [3] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004). | Zbl 1036.05001

[003] [4] C.T. Hoang and M. Kouider, On the b-dominating coloring of graphs, Discrete Appl. Math. 152 (2005) 176-186, doi: 10.1016/j.dam.2005.04.001. | Zbl 1092.05023

[004] [5] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-141, doi: 10.1016/S0166-218X(98)00146-2. | Zbl 0933.05051

[005] [6] J. Kará, J. Kratochvil and M. Voigt, b-continuity, Preprint No. M 14/04, Technical University Ilmenau, Faculty for Mathematics and Natural Sciences (2004).

[006] [7] A. Kohl and I. Schiermeyer, Some Results on Reed's Conjecture about ω, Δ, and χ with respect to α, Discrete Math. 310 (2010) 1429-1438, doi: 10.1016/j.disc.2009.05.025.

[007] [8] M. Kouider and M. Maheo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277, doi: 10.1016/S0012-365X(01)00469-1. | Zbl 1008.05056

[008] [9] M. Kouider and M. Zaker, Bounds for the b-chromatic number of some families of graphs, Discrete Math. 306 (2006) 617-623, doi: 10.1016/j.disc.2006.01.012. | Zbl 1087.05023

[009] [10] L. Rabern, A note on Reed's conjecture, SIAM J. Discrete Math. 22 (2008) 820-827, doi: 10.1137/060659193. | Zbl 1191.05042

[010] [11] S. Radziszowski, Small Ramsey Numbers, Electronic Journal of Combinatorics, Dynamic Survey DS1 (2006).