A b-coloring of a graph G by k colors is a proper vertex coloring such that every color class contains a color-dominating vertex, that is, a vertex having neighbors in all other k-1 color classes. The b-chromatic number is the maximum integer k for which G has a b-coloring by k colors. Moreover, the graph G is called b-continuous if G admits a b-coloring by k colors for all k satisfying . In this paper, we establish four general upper bounds on . We present results on the b-chromatic number and the b-continuity problem for special graphs, in particular for disconnected graphs and graphs with independence number 2. Moreover we determine for graphs G with minimum degree δ(G) ≥ |V(G)|-3, graphs G with clique number ω(G) ≥ |V(G)|-3, and graphs G with independence number α(G) ≥ |V(G)|-2. We also prove that these graphs are b-continuous.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1575, author = {Mais Alkhateeb and Anja Kohl}, title = {Upper bounds on the b-chromatic number and results for restricted graph classes}, journal = {Discussiones Mathematicae Graph Theory}, volume = {31}, year = {2011}, pages = {709-735}, zbl = {1255.05072}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1575} }
Mais Alkhateeb; Anja Kohl. Upper bounds on the b-chromatic number and results for restricted graph classes. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 709-735. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1575/
[000] [1] D. Barth, J. Cohen and T. Faik, On the b-continuity property of graphs, Discrete Appl. Math. 155 (2007) 1761-1768, doi: 10.1016/j.dam.2007.04.011. | Zbl 1132.05020
[001] [2] T. Faik and J.-F. Sacle, Some b-continuous classes of graphs, Technical Report N1350, LRI (Universite de Paris Sud, 2003).
[002] [3] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004). | Zbl 1036.05001
[003] [4] C.T. Hoang and M. Kouider, On the b-dominating coloring of graphs, Discrete Appl. Math. 152 (2005) 176-186, doi: 10.1016/j.dam.2005.04.001. | Zbl 1092.05023
[004] [5] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-141, doi: 10.1016/S0166-218X(98)00146-2. | Zbl 0933.05051
[005] [6] J. Kará, J. Kratochvil and M. Voigt, b-continuity, Preprint No. M 14/04, Technical University Ilmenau, Faculty for Mathematics and Natural Sciences (2004).
[006] [7] A. Kohl and I. Schiermeyer, Some Results on Reed's Conjecture about ω, Δ, and χ with respect to α, Discrete Math. 310 (2010) 1429-1438, doi: 10.1016/j.disc.2009.05.025.
[007] [8] M. Kouider and M. Maheo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277, doi: 10.1016/S0012-365X(01)00469-1. | Zbl 1008.05056
[008] [9] M. Kouider and M. Zaker, Bounds for the b-chromatic number of some families of graphs, Discrete Math. 306 (2006) 617-623, doi: 10.1016/j.disc.2006.01.012. | Zbl 1087.05023
[009] [10] L. Rabern, A note on Reed's conjecture, SIAM J. Discrete Math. 22 (2008) 820-827, doi: 10.1137/060659193. | Zbl 1191.05042
[010] [11] S. Radziszowski, Small Ramsey Numbers, Electronic Journal of Combinatorics, Dynamic Survey DS1 (2006).