Let G = (V(G),E(G)) be a simple graph, and let k be a positive integer. A subset D of V(G) is a k-dominating set if every vertex of V(G) - D is dominated at least k times by D. The k-domination number γₖ(G) is the minimum cardinality of a k-dominating set of G. In [5] Volkmann showed that for every nontrivial tree T, γ₂(T) ≥ γ₁(T)+1 and characterized extremal trees attaining this bound. In this paper we characterize all trees T with γ₂(T) = γ₁(T)+2.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1573, author = {Mustapha Chellali and Lutz Volkmann}, title = {Characterization of trees with equal 2-domination number and domination number plus two}, journal = {Discussiones Mathematicae Graph Theory}, volume = {31}, year = {2011}, pages = {687-697}, zbl = {1255.05132}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1573} }
Mustapha Chellali; Lutz Volkmann. Characterization of trees with equal 2-domination number and domination number plus two. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 687-697. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1573/
[000] [1] M. Chellali, T.W. Haynes and L. Volkmann, Global offensive alliance numbers in graphs with emphasis on trees, Australasian J. Combin. 45 (2009) 87-96. | Zbl 1207.05136
[001] [2] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Y. Alavi and A.J. Schwenk, editors, ed(s), Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300. | Zbl 0573.05049
[002] [3] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs ( Marcel Dekker, Inc., New York, 1998). | Zbl 0890.05002
[003] [4] S.M. Hedetniemi, S.T. Hedetniemi, and P. Kristiansen, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177. | Zbl 1051.05068
[004] [5] L. Volkmann, Some remarks on lower bounds on the p-domination number in trees, J. Combin. Math. Combin. Comput. 61 (2007) 159-167. | Zbl 1137.05055