We obtain some improved upper and lower bounds on the oriented chromatic number for different classes of products of graphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1572, author = {N.R. Aravind and N. Narayanan and C.R. Subramanian}, title = {Oriented colouring of some graph products}, journal = {Discussiones Mathematicae Graph Theory}, volume = {31}, year = {2011}, pages = {675-686}, zbl = {1255.05073}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1572} }
N.R. Aravind; N. Narayanan; C.R. Subramanian. Oriented colouring of some graph products. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 675-686. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1572/
[000] [1] N.R. Aravind and C.R. Subramanian, Forbidden subgraph colorings and the oriented chromatic number, in: 4th International Workshop on Combinatorial Algorithms 4393 (2009) 477-488. | Zbl 1267.05111
[001] [2] O.V. Borodin, A.V. Kostochka, J. Nesetril, A. Raspaud and É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77-89, doi: 10.1016/S0012-365X(98)00393-8. | Zbl 0932.05033
[002] [3] O.V. Borodin, A.V. Kostochka, A. Raspaud and É. Sopena. Acyclic colouring of 1-planar graphs, Discrete Appl. Math. 114 (2001) 29-41, doi: 10.1016/S0166-218X(00)00359-0. | Zbl 0996.05053
[003] [4] B. Courcelle, The monadic second order logic of graphs. vi. on several representations of graphs by relational structures, Discrete Appl. Math. 54 (1994) 117-149, doi: 10.1016/0166-218X(94)90019-1. | Zbl 0809.03005
[004] [5] L. Esperet and P. Ochem, Oriented colorings of 2-outerplanar graphs, Information Processing Letters 101 (2007) 215-219, doi: 10.1016/j.ipl.2006.09.007. | Zbl 1185.05059
[005] [6] G. Fertin, A. Raspaud and A. Roychowdhury, On the oriented chromatic number of grids, Information Processing Letters 85 (2003) 261-266, doi: 10.1016/S0020-0190(02)00405-2. | Zbl 1173.68604
[006] [7] E. Fried, On homogeneous tournaments, Combinatorial Theory and its Applications 2 (1970) 467-476. | Zbl 0215.33704
[007] [8] P. Hell and J. Nesetril, Graphs and Homomorphisms, Oxford Lecture Series in Mathematics and its Applications (28), 2004. | Zbl 1062.05139
[008] [9] T. Herman, I. Pirwani and S. Pemmaraju, Oriented edge colorings and link scheduling in sensor networks, in: SENSORWARE 2006: 1st International Workshop on Software for Sensor Networks, 2006.
[009] [10] W. Imrich and S. Klavžar, Product Graphs : Structure and Recognition (John Wiley & Sons, Inc., 2000).
[010] [11] A.V. Kostochka, É. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331-340, doi: 10.1002/(SICI)1097-0118(199704)24:4<331::AID-JGT5>3.0.CO;2-P | Zbl 0873.05044
[011] [12] T.H. Marshall, Homomorphism bounds for oriented planar graphs, J. Graph Theory 55 (2007) 175-190, doi: 10.1002/jgt.20233. | Zbl 1120.05039
[012] [13] J. Nesetril, A. Raspaud and É. Sopena, Colorings and girth of oriented planar graphs, Discrete Math. 165-166 (1997) 519-530. | Zbl 0873.05042
[013] [14] P. Ochem, Oriented colorings of triangle-free planar graphs, Information Processing Letters 92 (2004) 71-76, doi: 10.1016/j.ipl.2004.06.012. | Zbl 1173.68593
[014] [15] A. Pinlou and É. Sopena, Oriented vertex and arc colorings of outerplanar graphs, Information Processing Letters 100 (2006) 97-104, doi: 10.1016/j.ipl.2006.06.012. | Zbl 1185.05064
[015] [16] A. Raspaud and É. Sopena, Good and semi-strong colorings of oriented planar graphs, Information Processing Letters 51 (1994) 171-174, doi: 10.1016/0020-0190(94)00088-3. | Zbl 0806.05031
[016] [17] É. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191-205, doi: 10.1002/(SICI)1097-0118(199707)25:3<191::AID-JGT3>3.0.CO;2-G | Zbl 0874.05026
[017] [18] É. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369, doi: 10.1016/S0012-365X(00)00216-8. | Zbl 0971.05039