In this paper, we prove that an element splitting operation by every pair of elements on a cographic matroid yields a cographic matroid if and only if it has no minor isomorphic to M(K₄).
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1568, author = {Kiran Dalvi and Y.M. Borse and M.M. Shikare}, title = {Forbidden-minor characterization for the class of cographic element splitting matroids}, journal = {Discussiones Mathematicae Graph Theory}, volume = {31}, year = {2011}, pages = {601-606}, zbl = {1229.05066}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1568} }
Kiran Dalvi; Y.M. Borse; M.M. Shikare. Forbidden-minor characterization for the class of cographic element splitting matroids. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 601-606. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1568/
[000] [1] S. Akkari and J. Oxley, Some local extremal connectivity results for matroids, Combinatorics, Probability and Computing 2 (1993) 367-384, doi: 10.1017/S0963548300000766. | Zbl 0793.05033
[001] [2] Y.M. Borse, K. Dalvi and M.M. Shikare, Excluded-minor characterization for the class of cographic splitting matroids, Ars Combin., to appear. | Zbl 06475967
[002] [3] K. Dalvi, Y.M. Borse and M.M. Shikare, Forbidden-minor characterization for the class of graphic element splitting matroids, Discuss. Math. Graph Theory 29 (2009) 629-644, doi: 10.7151/dmgt.1469. | Zbl 1194.05017
[003] [4] F. Harary, Graph Theory (Addison-Wesley, Reading, 1969).
[004] [5] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).
[005] [6] T.T. Raghunathan, M.M. Shikare and B.N. Waphare, Splitting in a binary matroid, Discrete Math. 184 (1998) 267-271, doi: 10.1016/S0012-365X(97)00202-1. | Zbl 0955.05022
[006] [7] M.M. Shikare and B.N. Waphare, Excluded-minors for the class of graphic splitting matroids, Ars Combin. 97 (2010) 111-127. | Zbl 1249.05048