Simplicial and nonsimplicial complete subgraphs
Terry A. McKee
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 577-586 / Harvested from The Polish Digital Mathematics Library

Define a complete subgraph Q to be simplicial in a graph G when Q is contained in exactly one maximal complete subgraph ('maxclique') of G; otherwise, Q is nonsimplicial. Several graph classes-including strong p-Helly graphs and strongly chordal graphs-are shown to have pairs of peculiarly related new characterizations: (i) for every k ≤ 2, a certain property holds for the complete subgraphs that are in k or more maxcliques of G, and (ii) in every induced subgraph H of G, that same property holds for the nonsimplicial complete subgraphs of H. One example: G is shown to be hereditary clique-Helly if and only if, for every k ≤ 2, every triangle whose edges are each in k or more maxcliques is itself in k or more maxcliques; equivalently, in every induced subgraph H of G, if each edge of a triangle is nonsimplicial in H, then the triangle itself is nonsimplicial in H.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:271014
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1566,
     author = {Terry A. McKee},
     title = {Simplicial and nonsimplicial complete subgraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {577-586},
     zbl = {1229.05237},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1566}
}
Terry A. McKee. Simplicial and nonsimplicial complete subgraphs. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 577-586. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1566/

[000] [1] A. Brandstadt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics (Philadelphia, 1999), doi: 10.1137/1.9780898719796. | Zbl 0919.05001

[001] [2] M.C. Dourado, F. Protti and J.L. Szwarcfiter, On the strong p-Helly property, Discrete Appl. Math. 156 (2008) 1053-1057, doi: 10.1016/j.dam.2007.05.047. | Zbl 1140.05046

[002] [3] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189, doi: 10.1016/0012-365X(83)90154-1. | Zbl 0514.05048

[003] [4] R.E. Jamison, On the null-homotopy of bridged graphs, European J. Combin. 8 (1987) 421-428. | Zbl 0638.05033

[004] [5] T.A. McKee, A new characterization of strongly chordal graphs, Discrete Math. 205 (1999) 245-247, doi: 10.1016/S0012-365X(99)00107-7.

[005] [6] T.A. McKee, Requiring chords in cycles, Discrete Math. 297 (2005) 182-189, doi: 10.1016/j.disc.2005.04.009. | Zbl 1070.05056

[006] [7] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and Applied Mathematics (Philadelphia, 1999). | Zbl 0945.05003

[007] [8] E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993) 216-220. | Zbl 0794.05113

[008] [9] W.D. Wallis and G.-H. Zhang, On maximal clique irreducible graphs, J. Combin. Math. Combin. Comput. 8 (1993) 187-193. | Zbl 0735.05052