Unique factorization theorem for object-systems
Peter Mihók ; Gabriel Semanišin
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 559-575 / Harvested from The Polish Digital Mathematics Library

The concept of an object-system is a common generalization of simple graph, digraph and hypergraph. In the theory of generalised colourings of graphs, the Unique Factorization Theorem (UFT) for additive induced-hereditary properties of graphs provides an analogy of the well-known Fundamental Theorem of Arithmetics. The purpose of this paper is to present UFT for object-systems. This result generalises known UFT for additive induced-hereditary and hereditary properties of graphs and digraphs. Formal Concept Analysis is applied in the proof.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:270894
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1565,
     author = {Peter Mih\'ok and Gabriel Semani\v sin},
     title = {Unique factorization theorem for object-systems},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {559-575},
     zbl = {1238.05096},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1565}
}
Peter Mihók; Gabriel Semanišin. Unique factorization theorem for object-systems. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 559-575. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1565/

[000] [1] A. Bonato, Homomorphism and amalgamation, Discrete Math. 270 (2003) 33-42, doi: 10.1016/S0012-365X(02)00864-6. | Zbl 1024.03046

[001] [2] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 42-69.

[002] [3] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026

[003] [4] I. Broere and J. Bucko, Divisibility in additive hereditary properties and uniquely partitionable graphs, Tatra Mt. Math. Publ. 18 (1999) 79-87. | Zbl 0951.05034

[004] [5] I. Broere, J. Bucko and P. Mihók, Criteria for the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties, Discuss. Math. Graph Theory 22 (2002) 31-37, doi: 10.7151/dmgt.1156. | Zbl 1013.05066

[005] [6] J. Bucko and P. Mihók, On uniquely partitionable systems of objects, Discuss. Math. Graph Theory 26 (2006) 281-289, doi: 10.7151/dmgt.1320. | Zbl 1142.05024

[006] [7] R. Cowen, S.H. Hechler and P. Mihók, Graph coloring compactness theorems equivalent to BPI, Scientia Math. Japonicae 56 (2002) 171-180. | Zbl 1023.05048

[007] [8] A. Farrugia, Uniqueness and complexity in generalised colouring., Ph.D. Thesis, University of Waterloo, April 2003 (available at http://etheses.uwaterloo.ca).

[008] [9] A. Farrugia, Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard, Elect. J. Combin. 11 (2004) R46, pp. 9 (electronic). | Zbl 1053.05046

[009] [10] A. Farrugia and R.B. Richter, Unique factorization of additive induced-hereditary properties, Discuss. Math. Graph Theory 24 (2004) 319-343, doi: 10.7151/dmgt.1234. | Zbl 1061.05070

[010] [11] A. Farrugia, P. Mihók, R.B. Richter and G. Semanišin, Factorizations and Characterizations of Induced-Hereditary and Compositive Properties, J. Graph Theory 49 (2005) 11-27, doi: 10.1002/jgt.20062. | Zbl 1067.05057

[011] [12] R. Fraïssé, Sur certains relations qui generalisent l'ordre des nombers rationnels, C.R. Acad. Sci. Paris 237 (1953) 540-542. | Zbl 0051.03803

[012] [13] R. Fraïssé, Theory of Relations (North-Holland, Amsterdam, 1986).

[013] [14] B. Ganter and R. Wille, Formal Concept Analysis - Mathematical Foundation (Springer-Verlag Berlin Heidelberg, 1999), doi: 10.1007/978-3-642-59830-2. | Zbl 0909.06001

[014] [15] W. Imrich, P. Mihók and G. Semanišin, A note on the unique factorization theorem for properties of infinite graphs, Stud. Univ. Zilina, Math. Ser. 16 (2003) 51-54. | Zbl 1056.05062

[015] [16] J. Jakubík, On the lattice of additive hereditary properties of finite graphs, Discuss. Math. - General Algebra and Applications 22 (2002) 73-86. | Zbl 1032.06003

[016] [17] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995). | Zbl 0971.05046

[017] [18] J. Kratochvíl and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors, Discrete Math. 213 (2000) 189-194, doi: 10.1016/S0012-365X(99)00179-X. | Zbl 0949.05025

[018] [19] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58. | Zbl 0623.05043

[019] [20] P. Mihók, Unique factorization theorem, Discuss. Math. Graph Theory 20 (2000) 143-153, doi: 10.7151/dmgt.1114. | Zbl 0968.05032

[020] [21] P. Mihók, On the lattice of additive hereditary properties of object systems, Tatra Mt. Math. Publ. 30 (2005) 155-161. | Zbl 1150.05394

[021] [22] P. Mihók, G. Semanišin and R. Vasky, Additive and hereditary properties of graphs are uniquely factorizable into irreducible factors, J. Graph Theory 33 (2000) 44-53, doi: 10.1002/(SICI)1097-0118(200001)33:1<44::AID-JGT5>3.0.CO;2-O | Zbl 0942.05056

[022] [23] P. Mihók and G. Semanišin, Unique Factorization Theorem and Formal Concept Analysis, B. Yahia et al. (Eds.): CLA 2006, LNAI 4923, (Springer-Verlag, Berlin Heidelberg 2008) 231-238. | Zbl 1133.05306

[023] [24] B.C. Pierce, Basic Category Theory for Computer Scientists, Foundations of Computing Series (The MIT Press, Cambridge, Massachusetts 1991).

[024] [25] N.W. Sauer, Canonical vertex partitions, Combinatorics, Probability and Computing 12 (2003) 671-704, doi: 10.1017/S0963548303005765. | Zbl 1062.03046

[025] [26] E.R. Scheinerman, On the Structure of Hereditary Classes of Graphs, J. Graph Theory 10 (1986) 545-551, doi: 10.1002/jgt.3190100414. | Zbl 0609.05057

[026] [27] R. Vasky, Unique factorization theorem for additive induced-hereditary properties of digraphs Studies of the University of Zilina, Mathematical Series 15 (2002) 83-96. | Zbl 1054.05047