The hull number of strong product graphs
A.P. Santhakumaran ; S.V. Ullas Chandran
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 493-507 / Harvested from The Polish Digital Mathematics Library

For a connected graph G with at least two vertices and S a subset of vertices, the convex hull [S]G is the smallest convex set containing S. The hull number h(G) is the minimum cardinality among the subsets S of V(G) with [S]G=V(G). Upper bound for the hull number of strong product G ⊠ H of two graphs G and H is obtainted. Improved upper bounds are obtained for some class of strong product graphs. Exact values for the hull number of some special classes of strong product graphs are obtained. Graphs G and H for which h(G⊠ H) = h(G)h(H) are characterized.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:270792
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1560,
     author = {A.P. Santhakumaran and S.V. Ullas Chandran},
     title = {The hull number of strong product graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {493-507},
     zbl = {1229.05240},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1560}
}
A.P. Santhakumaran; S.V. Ullas Chandran. The hull number of strong product graphs. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 493-507. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1560/

[000] [1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990). | Zbl 0688.05017

[001] [2] G. B. Cagaanan and S.R. Canoy, Jr., On the hull sets and hull number of the Composition graphs, Ars Combin. 75 (2005) 113-119. | Zbl 1081.05100

[002] [3] G. Chartrand, F. Harary and P. Zhang, On the hull number of a graph, Ars Combin. 57 (2000) 129-138. | Zbl 1064.05049

[003] [4] G. Chartrand and P. Zhang, Extreme geodesic graphs, Czechoslovak Math. J. 52 (127) (2002) 771-780, doi: 10.1023/B:CMAJ.0000027232.97642.45. | Zbl 1009.05051

[004] [5] G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a Graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007. | Zbl 0987.05047

[005] [6] G. Chartrand, J.F. Fink and P. Zhang, On the hull Number of an oriented graph, Int. J. Math. Math Sci. 36 (2003) 2265-2275, doi: 10.1155/S0161171203210577. | Zbl 1027.05034

[006] [7] G. Chartrand and P. Zhang, Introduction to Graph Theory (Tata McGraw-Hill Edition, New Delhi, 2006).

[007] [8] M.G. Everett and S.B. Seidman, The hull number of a graph, Discrete Math. 57 (1985) 217-223, doi: 10.1016/0012-365X(85)90174-8. | Zbl 0584.05044

[008] [9] W. Imrich and S. Klavžar, Product graphs: Structure and Recognition (Wiley-Interscience, New York, 2000). | Zbl 0963.05002

[009] [10] T. Jiang, I. Pelayo and D. Pritikin, Geodesic convexity and Cartesian product in graphs, manuscript.