Loading [MathJax]/extensions/MathZoom.js
Interval edge colorings of some products of graphs
Petros A. Petrosyan
Discussiones Mathematicae Graph Theory, Tome 31 (2011), p. 357-373 / Harvested from The Polish Digital Mathematics Library

An edge coloring of a graph G with colors 1,2,...,t is called an interval t-coloring if for each i ∈ {1,2,...,t} there is at least one edge of G colored by i, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. A graph G is interval colorable, if there is an integer t ≥ 1 for which G has an interval t-coloring. Let ℜ be the set of all interval colorable graphs. In 2004 Kubale and Giaro showed that if G,H ∈ 𝔑, then the Cartesian product of these graphs belongs to 𝔑. Also, they formulated a similar problem for the lexicographic product as an open problem. In this paper we first show that if G ∈ 𝔑, then G[nK₁] ∈ 𝔑 for any n ∈ ℕ. Furthermore, we show that if G,H ∈ 𝔑 and H is a regular graph, then strong and lexicographic products of graphs G,H belong to 𝔑. We also prove that tensor and strong tensor products of graphs G,H belong to 𝔑 if G ∈ 𝔑 and H is a regular graph.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:270969
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1551,
     author = {Petros A. Petrosyan},
     title = {Interval edge colorings of some products of graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {31},
     year = {2011},
     pages = {357-373},
     zbl = {1234.05103},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1551}
}
Petros A. Petrosyan. Interval edge colorings of some products of graphs. Discussiones Mathematicae Graph Theory, Tome 31 (2011) pp. 357-373. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1551/

[000] [1] A.S. Asratian and R.R. Kamalian, Interval colorings of edges of a multigraph, Appl. Math. 5 (1987) 25-34 (in Russian). | Zbl 0805.05024

[001] [2] A.S. Asratian and R.R. Kamalian, Investigation on interval edge-colorings of graphs, J. Combin. Theory (B) 62 (1994) 34-43, doi: 10.1006/jctb.1994.1053. | Zbl 0805.05024

[002] [3] A.S. Asratian, T.M.J. Denley and R. Häggkvist, Bipartite Graphs and their Applications (Cambridge University Press, Cambridge, 1998), doi: 10.1017/CBO9780511984068. | Zbl 0914.05049

[003] [4] A.S. Asratian, C.J. Casselgren, J. Vandenbussche and D.B. West, Proper path-factors and interval edge-coloring of (3,4)-biregular bigraphs, J. Graph Theory 61 (2009) 88-97, doi: 10.1002/jgt.20370. | Zbl 1198.05037

[004] [5] M.A. Axenovich, On interval colorings of planar graphs, Congr. Numer. 159 (2002) 77-94. | Zbl 1026.05036

[005] [6] C. Berge, Theorie des Graphes et ses Applications (Dunod, Paris, 1958).

[006] [7] M. Bouchard, A. Hertz and G. Desaulniers, Lower bounds and a tabu search algorithm for the minimum deficiency problem, J. Comb. Optim. 17 (2009) 168-191, doi: 10.1007/s10878-007-9106-0. | Zbl 1180.90344

[007] [8] Y. Feng and Q. Huang, Consecutive edge-coloring of the generalized θ-graph, Discrete Appl. Math. 155 (2007) 2321-2327, doi: 10.1016/j.dam.2007.06.010. | Zbl 1127.05037

[008] [9] K. Giaro, The complexity of consecutive Δ-coloring of bipartite graphs: 4 is easy, 5 is hard, Ars Combin. 47 (1997) 287-298. | Zbl 0933.05050

[009] [10] K. Giaro and M. Kubale, Consecutive edge-colorings of complete and incomplete Cartesian products of graphs, Congr. Numer. 128 (1997) 143-149. | Zbl 0903.05021

[010] [11] K. Giaro, M. Kubale and M. Maafiejski, On the deficiency of bipartite graphs, Discrete Appl. Math. 94 (1999) 193-203, doi: 10.1016/S0166-218X(99)00021-9. | Zbl 0933.05054

[011] [12] K. Giaro, M. Kubale and M. Maafiejski, Consecutive colorings of the edges of general graphs, Discrete Math. 236 (2001) 131-143, doi: 10.1016/S0012-365X(00)00437-4. | Zbl 1007.05045

[012] [13] K. Giaro and M. Kubale, Compact scheduling of zero-one time operations in multi-stage systems, Discrete Appl. Math. 145 (2004) 95-103, doi: 10.1016/j.dam.2003.09.010. | Zbl 1056.05059

[013] [14] H.M. Hansen, Scheduling with minimum waiting periods, Master's Thesis (Odense University, Odense, Denmark, 1992) (in Danish).

[014] [15] D. Hanson and C.O.M. Loten, A lower bound for interval coloring of bi-regular bipartite graphs, Bull. ICA 18 (1996) 69-74. | Zbl 0861.05024

[015] [16] D. Hanson, C.O.M. Loten and B. Toft, On interval colorings of bi-regular bipartite graphs, Ars Combin. 50 (1998) 23-32. | Zbl 0963.05049

[016] [17] P.E. Himmelwright and J.E. Williamson, On 1-factorability and edge-colorability of Cartesian products of graphs, Elem. Der Math. 29 (1974) 66-67. | Zbl 0287.05117

[017] [18] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley Interscience Series in Discrete Mathematics and Optimization, 1995).

[018] [19] R.R. Kamalian, Interval colorings of complete bipartite graphs and trees, preprint, Comp. Cen. of Acad. Sci. of Armenian SSR, Erevan, 1989 (in Russian).

[019] [20] R.R. Kamalian, Interval Edge Colorings of Graphs (Doctoral Thesis, Novosibirsk, 1990). | Zbl 0805.05024

[020] [21] R.R. Kamalian and A.N. Mirumian, Interval edge colorings of bipartite graphs of some class, Dokl. NAN RA 97 (1997) 3-5 (in Russian).

[021] [22] R.R. Kamalian and P.A. Petrosyan, Interval colorings of some regular graphs, Math. Probl. Comp. Sci. 25 (2006) 53-56.

[022] [23] R.R. Kamalian and P.A. Petrosyan, On interval colorings of complete k-partite graphs Knk, Math. Probl. Comp. Sci. 26 (2006) 28-32.

[023] [24] A. Kotzig, 1-Factorizations of cartesian products of regular graphs, J. Graph Theory 3 (1979) 23-34, doi: 10.1002/jgt.3190030104. | Zbl 0395.05059

[024] [25] M. Kubale, ed., Graph Colorings (American Mathematical Society, 2004).

[025] [26] E.S. Mahamoodian, On edge-colorability of Cartesian products of graphs, Canad. Math. Bull. 24 (1981) 107-108, doi: 10.4153/CMB-1981-017-9.

[026] [27] B. Mohar and T. Pisanski, Edge-coloring of a family of regular graphs, Publ. Inst. Math. (Beograd) 33 (1983) 157-162. | Zbl 0517.05034

[027] [28] B. Mohar, On edge-colorability of products of graphs, Publ. Inst. Math. (Beograd) 36 (1984) 13-16. | Zbl 0569.05021

[028] [29] P.A. Petrosyan and G.H. Karapetyan, Lower bounds for the greatest possible number of colors in interval edge colorings of bipartite cylinders and bipartite tori, in: Proceedings of the CSIT Conference (2007) 86-88.

[029] [30] P.A. Petrosyan, Interval edge-colorings of complete graphs and n-dimensional cubes, Discrete Math. 310 (2010) 1580-1587, doi: 10.1016/j.disc.2010.02.001. | Zbl 1210.05048

[030] [31] T. Pisanski, J. Shawe-Taylor and B. Mohar, 1-Factorization of the composition of regular graphs, Publ. Inst. Math. (Beograd) 33 (1983) 193-196. | Zbl 0517.05052

[031] [32] A.V. Pyatkin, Interval coloring of (3,4)-biregular bipartite graphs having large cubic subgraphs, J. Graph Theory 47 (2004) 122-128, doi: 10.1002/jgt.20021. | Zbl 1055.05064

[032] [33] G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457, doi: 10.1007/BF01162967. | Zbl 0093.37603

[033] [34] A. Schwartz, The deficiency of a regular graph, Discrete Math. 306 (2006) 1947-1954, doi: 10.1016/j.disc.2006.03.059. | Zbl 1099.05037

[034] [35] S.V. Sevast'janov, Interval colorability of the edges of a bipartite graph, Metody Diskret. Analiza 50 (1990) 61-72 (in Russian).

[035] [36] V.G. Vizing, The Cartesian product of graphs, Vych. Sis. 9 (1963) 30-43 (in Russian).

[036] [37] D.B. West, Introduction to Graph Theory (Prentice-Hall, New Jersey, 1996). | Zbl 0845.05001

[037] [38] M.K. Zhou, Decomposition of some product graphs into 1-factors and Hamiltonian cycles, Ars Combin. 28 (1989) 258-268. | Zbl 0766.05069